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Preface

This work has two primary parts. One consists of the 13 LABS and three Projects in this
manual. The other is a set of instructional M-files that harness the power of the software package
MatLaB @ to render it appropriate for an educational sctting.! (See page x for an overview of
the instructional routines.)

The LABS and Projects are meant to supplement a standard sophomore level course in linear
algebra. They follow the general outline for such a course, introducing instructional routines
and appropriate MATLAB commands to solve problems related to each concept.

Our primary goal is to use the laboratory experiences to aid in understanding the basic ideas
of linear algebra. As such we use instructional M-files that provide a tool kit  for working with
linear algebra without the need for programming in the MATLAB command set. Although no
programming background is assumed, those students with computing skills can further enhance
their skills within MATLAB . We have found that students initially rely on the tool kit, but many
quickly begin to use MATLAB commands directly, even though we provide little formal instruction
in this area. We recommend an instructional approach that integrates the language and ter-
" minology of computing within the lecture format. In addition, when possible and appropriate,
computer demonstrations and experiments should be used in lectures.

Three of the LABS are different from the others. LAB 5 examines sets with addition and
scalar multiplication and investigates the defining properties of a vector space in a pedagogical
way. LAB 8 presents the defining properties of the determinant in such a way that a considerable
amount of class time can be saved on this topic. Also, LAB 11 presents an independent supple-
ment to the standard classroom coverage of linear transformations by examining the geometry
of plane linear transformations. New Section 11.2 introduces homogeneous coordinates to incor-
porate translations.

The LABS are not self contained. Except for LABS 8 and 11, they assume that the material
has already been presented in the classroom. Sometimes, however, it is expedient to discuss a
topic using a fresh, computational approach.

New material has been added to this third addition, both in the LABS and in the accom-
panying instructional M-files. The modifications to the LABS provide a number of alternate

1The MATLAB software must be purchased separately from this work.

*The tool kit of instructional M-files is available free of charge. The files are available at
http://www.prenhall.com through the Companion Web Sites tab. This tool kit was developed by the authors, not
The MathWorks, and is to be used strictly for instructional purposes. The tool kit is compatible with MATLAB
6.5 or higher for Windows, and the Student Edition of MATLAB for Microsoft Windows. Most features of the

instructional routines are compatible with corresponding MacIntosh and workstation versions.

Instructional m-files are available from David Hill at
https://astro.temple.edu/~dhill001/books/


David Hill 


approaches to topics some of which use more graphically oriented M-files to provide visualiza-
tion of concepts. Many of the instructional M-files have been enhanced to take advantage of
the graphical user interface (GUI) available in MATLAB . In addition we have included instruc-
tional files that use the Symbolic Math Toolbox. These sections can be omitted without loss
of continuity if this toolbox is not available. A detailed list of new features is on page viii and
a short description of all the instructional files is on page x. A full description of the instruc-
tional files is available by printing alldesc.txt that accompanies the tool kit of instructional files.

We extend our sincere gratitude to the National Science Foundation (ILI #DMS-9051282)
for providing the funds for implementing a mathematics laboratory at Temple University. This
facility provided the educational arena necessary to develop the laboratory materials and extend
our instructional M-files for MATLAB from 1990 to 1993. We thank the many students who were
patient with and receptive to using the laboratory to aid in the development and understanding
of the concepts of linear algebra.

A special thanks to our colleague Dr. Nicholas Macri for his valuable assistance in designing
and preparing this manual.

David R. Hill
David E. Zitarelli

May, 2003

Please address comments or inquiries to the authors using the following regular mail or elec-
tronic mail addresses or call us direct.

Dr. David R. Hill Dr. David E. Zitarelli
Mathematics Department Mathematics Department
Temple University Temple University

Philadelphia, Pa. 19122 USA Philadelphia, Pa. 19122 USA

David Hill has retired; use David Zitarelli is
dhillo01@temple.edu deceased.



Introduction to MATLAB and Some of its Features?

MATLAB is a versatile piece of software with linear algebra capabilities as its core. MATLAB
stands for MATrix LABoratory. It incorporates portions of professionally developed projects
of quality computer routines for linear algebra computation. The MATLAB kernel is written in
the C language but many of the routines are implemented in the MATLAB language.

Once you initiate the MATLAB software you will see the MATLAB logo appear and the MATLAB
prompt >>. The prompt >> indicates that MATLAB is awaiting a command. In LAB 1 we describe
how to enter matrices into MATLAB and explain some commands. However, there are certain
MATLAB features you should be aware of before you begin to use MATLAB .

MATLAB has a wide range of capabilities. In this course we will use only a small portion of
its features. We will find that MATLAB ’s command structure is very close to the way we write
algebraic expressions and linear algebra operations. The names of many MATLAB commands
closely parallel those of the operations and concepts of linear algebra. The MATLAB software
provides immediate on screen descriptions using the help command. Typing

help

displays a list of MATLAB subdirectories and alternate directories containing files corresponding
to commands and data sets. Typing help name, where name is the name of a command,
gives information on the specific command. In some cases the description displayed goes much
further than we need for this course. Hence you may not fully understand all of the description
displayed by help. For example, typing

help colon

(Note: there is a space between ‘help’ and ‘colon’.) reveals several uses that we will describe in
LAB 1. However, typing

help :

reveals a list of commands of little interest in a first course in linear algebra.

3The descriptions apply to MATLAB for Windows. For other versions check your MATLAB users guide.



¢ Entering Commands.

It is recommended that all commands in MaATLAB be typed in lower case letters.

e Starting Execution of a Command.

After you have typed a command name and any arguments or data required you must
press ENTER before it will begin to execute.

e The Command Stack.

As you enter commands MATLAB saves a number of the most recent commands in a
stack. Previous commands saved on the stack can be recalled using the up arrow key.
The number of commands saved on the stack varies depending upon the length of the
commands and other factors.

e Editing Commands.

If you make an error or mistype something in a command, you can use the left arrow
and right arrow keys to position the cursor for corrections. The home key moves the
cursor to the beginning of a command and the end key moves the cursor to the end.
The backspace and delete keys can be used to remove characters from a command
line. The insert key is used to initiate the insertion of characters. Pressing the inser
key a second time exits the insert mode. If MATLAB recognizes an error after you have -
pressed ENTER, then MATLAB responds with a beep and a message that may help define
the error. You can recall the command line using the up arrow key in order to edit the
line. (If you make an error and are unable to determine its cause, ask your instructor for
help.)

e Continuing Commands.

MaTLAB commands that do not fit on a single line can be continued to the next line using
an ellipsis, which is three consecutive periods followed by ENTER.

e Stopping a Command.
To stop execution of a MATLAB command press Ctrl and C simultaneously, then press

ENTER. Sometimes this sequence must be repeated.

e Quitting.
To quit MATLAB type exit or quit followed by ENTER.

iv
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New Features in the Third Edition

e New sections have been added on

> Vector space properties.

> Translations using homogeneous coordinates.
e New and revised exercises.

e New instructional activities to engage students in hands-on investigations through ex-
perimentation and discovery.

o Revisions to time sensitive data.

o Improvements in clarity of writing throughout.
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Topical Organization

The list below gives the sections that should be covered to incorporate the topics recom-
mended by the Linear Algebra Curriculum Study Group (LACSG) for a one-semester course.
The order of the topics reflects that recommended by LACSG; it also attests to the flexibility of

these Labs.
Topic Section Subject
Matrices 1.1 Entering matrices into MATLAB
3.1 Operations on matrices
Systems of equations 2.1 Reduction process
4.1 Homogeneous systems
4.2 Reduced row echelon form
4.3 Matrix inverses
Project 3.2 Least squares
Fundamental ideas 6.1 Linear combinations
6.2 Span
6.3 Independence/Dependence
6.4 Basis and dimension
7.2 Coordinates
Linear transformations 11.1 Graphics Experiments

11.2 More Graphics Experiments
12.1 Linear transformations
12.2 Matrix of a linear transformation
12.3 Range
12.4 Kernel

Orthogonality 9.1 Inner product
9.2 Norm
9.3 Angles
10.1 Orthonormal bases
10.2 Projections
10.3 Gram-Schmidt

Determinants 8.1 Determinants

Eigen problem 13.2 Eigenvalues and eigenvectors



Instructional Routines: Overview ¢

¢ DOCTOR Loads data for doctorates awarded annually in mathematics to U.S. citizens.
(Least Squares Models)

¢ EVECSRCH Searches for eigenvectors of a 2 X 2 matrix using vectors around the unit
circle. (Lab 13)

e GSCHMIDT Performs the Gram-Schmidt process on the columns of a matrix. (Lab
10)

e HIGHJUMP Loads men’s high jump Olympic data. (Least Squares Models)

e HOMSOLN Produces a set of basis vectors for the solution set of a homogeneous system
of equations. (Lab 12)

o IGRAPH Creates a graph associated with an incidence matrix. (Introduction to Graph
Theory)

e INVERT Computes the inverse of matrix A using the row reduced echelon form
of [A I]. (Lab 4)

o LINCOMBO! Interactive graphical activity to express one vector as a linear combina-
tion of two others. (Lab 7)

e LISUB Determines a linearly independent subset of a given set of vectors. (Lab 12)
¢ LONGJUMP Loads men’s long jump Olympic data. (Least Squares Models)

e LSQGAME! An interactive graphical game to determine a least squares line. (Least
Squares Models)

e LSQLINE' Constructs the equation and graph of the least squares line with evaluation
and deviation display options. (Least Squares Models)

4+ indicates that the routine employs the graphical user interface. File alldesc.txt contains the collection of
help files for the instructional files listed. It can be printed to have an easy reference document.
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M1500RUN Loads men’s 1500 meter run Olympic data. (Least Squares Models)
MAPCIRC Displays the image of the unit circle mapped by 2 x 2 matrix. (Lab 13)
MATDAT1 Loads a data set for practice with matrix operations. {Lab 3)
MATDAT2 Loads an alternate data set for practice with matrix operations. (Lab 3)
MATOPS Generates a screen summarizing matrix operations. (Lab 3)
MATRIXMAPS! Linear transformations and translations graphically. (Lab 11)

MATVEC! Interactive exploration of function F(z) = A%z, where A is a 2 x 2 matrix.
(Lab 13)

MODN Generates the remainder of x divided by n. (Secret Codes)
PLANELT Displays graphical results of plane linear transformations. (Lab 11)

PROJECT Graphically shows the projection of one vector onto another; options for
2D and 3D. (Lab 10)

PROJXY Graphically shows the projection of a 3D vector onto the xy-plane using
constructive stages. (Lab 10)

RATIONAL Displays the rational form of a matrix. (Lab 3)
REDUCE Performs row operations under user control using menu selection. (Lab 2)

ROWECH Instructional aid for teaching reduced row echelon form; provides hints,
help, and checking. (Lab 4)

ROWOP' Performs row operations under user control via mouse interaction. (Lab 2)

RREFQUIK Provides a quick movie form of reduction to reduced row echelon form.
(Lab 4)

RREFSTEP Provides a step-by-step annotated form of reduction to reduced row ech-
elon form. (Lab 4)

Xi



RREFVIEW Provides a slow movie form of reduction to reduced row echelon form
that pauses after each step. (Lab 4)

SYMROWOP! Row reduction of a symbolic matrix; tracks potential divisions by zero.
Requires Symbolic Math Toolbox. (Lab 2)

SYMRREF Forms the reduced row echelon form of a symbolic matrix and records
restrictions to avoid division by zero. Requires Symbolic Math Toolbox. (Lab 4)

UBALL Graphical demonstration of the shape of unit balls in 2-space or 3-space for
various norms. (Lab 9)

VAULTLSQ Displays piecewise linear least squares model for men's Olympic pole vault
event. (Least Squares Models)

VIZROWOP! Provides a graphics visualization of row operations on 2 x 2 linear sys-
tems. (Lab 2)

W100DASH Loads women’s 100 meter dash Olympic data. (Least Squares Models)

W100FREE Loads women’s 100 meter freestyle swimming Olympic data. (Least
Squares Models)

The instructional m-files are
available from David Hill
dhillO01@temple.edu
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LAB 1

Matrices in MATLAB

Topics: Basic MarLaB concepts: defining a matrix; = operator; matrix names; dis-
playing entries, rows, and columns; suppressing display; the colon (:) oper-
ator. Complex numbers, complex conjugate.

LAB 1



2 3 LAB 1

Introduction

A matrix is a rectangular array used to store and organize data. The simple, versatile ma-
trix is essentially the only kind of object with which MATLAB works. (The name MATLAB is an
abbreviation for MATrix LABoratory.)

Section 1.1 shows how to enter data, matrices, into MATLAB , identify them with names, and
how to address their entries. We also show how to view the contents of a matrix, and how
to change individual entries, rows, or columns. The assignment operator = and the colon (:)
command are discussed. These basic commands are used throughout this book.

Section 1.2 shows how to enter complex numbers and complex matrices. MATLAB does com-
plex arithmetic automatically.

The exercises provide an opportunity to explore related ideas and gain familiarity with
MATLAB .

L - - _ e ]
Section 1.1
Getting DATA into MATLAB

To enter a matrix

5 -4 0
-7 1 12
3 2 6

into MATLAB type the following:
5 -4 0 ; =71 12 ; 3 2 6]
Note:
e The matrix is enclosed in square brackets.

o Entries are separated by a space or by commas.

e Rows are separated by a semicolon. (The spaces beside the semicolons are optional and
are used here for legibility.)

The display generated is

LAB 1
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ang =
5 -4 0
-7 1 12
3 2 6

Notice that no brackets are displayed and that MATLAB has assigned this matrix to the name ans.

Every matrix in MATLAB must have a name. If you do not assign a matrix
& name, then MATLAB assigns it to ans, which we call the default variable
name.

To assign a matrix name we use the assignment operator =. For example

A=1 2 3 ; 4 5 6

is displayed as

Warnings:

e All rows must have the same number of entries.

e MaTLAB distinguishes between upper and lower case letters. So matrix B is not the same
as matrix b.

e A matrix name can be reused. In such a case the ‘old’ contents are lost.

To assign a matrix but suppress the display of its entries follow the closing square
bracket, |, with a semicolon. The MATLAB command

A=1[123 45 6

assigns the same matrix to name A as above, but no display will appear. You can enter this
command without retyping by using MATLAB ’s edit feature. Press the up arrow key to display
the previous command. Now just type the semicolon. (For more information on the edit features
see the Introduction to MATLAB and Some of Its Features in the Preface.)

To assign a currently defined matrix to a new name use the assignment operator =.

Command Z = A assigns the contents of matrix A to matrix Z. Matrix A is still defined.

LAB 1
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To change an entry type the matrix name, the entry’s location, the equals sign = , and the
new value. For example
A(2,1) = -12

sets the (2,1) entry of matrix A to —12. The entire matrix with this new entry is displayed.

Seeing a Matrix

To see all of the contents of a matrix type its name. If the matrix is large the display may
be broken into subsets of columns which are successively shown. For example type the command

hilb(9)

The display shows the first 7 columns followed by columns 8 and 9. (For information on com-
mand hilb type help hilb.) If a matrix is quite large the screen display will scroll too fast for
you to see the matrix. You can drag the scroll bar to reveal portions of a display as needed.
Alternatively type command more on followed by the matrix name or a command to generate
it. Press the Space Bar to reveal more of the matrix. Continue pressing the Space Bar until! the
message ‘— more—’ no longer appears near the bottom of the screen. Try this with hilb(20). To
disable this paging feature type command more off. (Use help for additional information on
the more command.)

We have the following conventions to see a portion of a matrix in MaTLAB . For purposes of
illustration, type A = hilb(5).

e To see the (2,3) entry of A type

A(2,3)
¢ To see the 4th row of A type

A(4,)
¢ To see the first column of A type

A(:,1)

In the above situations the colon, :, is interpreted to mean ‘all’. The colon can also be used to
represent a range of rows or columns. For example typing

2:8

displays

LAB 1
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The step value or increment in command 2 : 8 is understood to be 1. To increment by 3, we
use command 2 : 3 : 8. Try it. In general, the increment need not be a whole number. Try
1:.25:4, Alsotry 2: —-3:-24.

We can use the colon operator to display a subset of rows or columns of a matrix. As an
illustration, to display rows 3 through 5 of matrix A type

A(3:5,:)
Similarly columns 1 through 3 are displayed by typing
A(:,1:3)

For more information on the use of the colon operator type help colon. The colon operator
is very versatile in MATLAB but we will not need to use all of its features.

— _ p————— _— A

Exercises 1.1

Enter matrices A, B, and C into MATLAB .

4 -3 1 2 4 5
A=12 1 B=12 41 C=| 38
0 6 015 7

Exercises 1 and 2 refer to matrices A, B, and C.

1. On the line provided enter the command that performs the indicated action. Execute it
in MATLAB .

a) Display all of A.

b) Display only the second row of A.

c) Display only the (3,2)-entry of A.

d) Display ouly column 3 of B.

e) Display the first two columns of B.

f) Display the last 2 rows of A.

LAB 1
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2.

4l

Define a new matrix D having the same contents as A by typing the MATLAB command D
= A. On the line provided enter the command that performs the indicated action where
appropriate.

a) Make the (1,1)-entry of D equal to 12.
b) Make the (3,2)-entry of D equal to —8.

c) Type the command E = [D C]. Describe the contents of E in terms of D and C.

d) Type the command F = [D B]. Describe the contents of F in terms of D and B.

e) Type the command G = [E;B]. Describe the contents of G in terms of E and B.

To enter a column matrix into MATLAB type its entries separated by semicolons as in
[1;2;3]
Perform the following in MATLAB .

a) Construct a column €1 with entries 0, —1, 3, 5.
b) Construct a column ¢2 with entries 4, 2,0, 7.

c) Construct a matrix H whose columns are ¢l and ¢2 without retyping any entries.
Record the command you used below.

d) Construct a matrix K whose first two columns are both ¢1 and whose third column
is €2, without retyping any entries. Record the command you used below.

To enter a row into MATLAB type its entries separated by spaces as in
1 2 3
Perform the following in MATLAB .

a) Construct a row r1 with entries 2, —1, 5.
b) Construct a row r2 with entries 7,9, —3.

LAB 1
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6.

¢) Construct a matrix M whose rows are r1 and r2 without retyping any entries. Record
the command you used below.

d) Describe the result of command 3#rl.

e) Describe the result of command rl + r2.

f) Describe the result of command [r1;rl — r2;r2].

In Exercises 5 — 7 set up the system of equations that serves as a mathematical model
for the problem statement. The system will have the form

1+ Iy =

1+ To =

where you replace the boxes by numerical values obtained from the problem statement.

Two amounts of money z; and z2 total $600. The amount z; is twice the amount .
(Solve the system.)

Let £, = the number of cupcakes and 2 = the number of cookies a baker is to make in
one hour. On the average it takes a baker 4 seconds to prepare a cupcake and 10 seconds
to prepare a cookie. The selling price of a cupcake is 8.35 and that of a cookie is $.25. If
the total revenue from the baker’s work in 1 hour is to be $127.50, how many cupcakes
and cookies must be made? (Solve the system.)

LAB 1
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7. (Follow the ideas in Exercises 5 and 6, only now there will be three unknowns.) A length
of pipe 50ft. long is to be cut into three sections of lengths z;, 23, 23. It is required that
length z3 be equal to the sum of lengths z; and z2 and that length z3 be five feet longer
than twice the length z2. (Solve the system.)

Section 1.2
Complex Numbers and Matrices

MarLAB is designed to work with complex numbers and perform operations on them. A
complex number z has the form

z=0a+b

where a and b are real numbers called the real part and the imaginary part, respectively. (If
b =0, then z is a real number.) The symbol i is called the complez unit and

1=+-1
To enter complex numbers into MATLAB we must first ensure that the complex unit is defined.
When MATLAB first starts up, variables ¢ (and j) are loaded with +/—1. However, since the names
¢ and j are commonly used for subscripts and indices, it is recommended that the command

i = sqrt(-1)

be entered before you begin assigning complex values to matrix elements. The preceding com-
mand displays
0 + 1.00001

To assign a complex number like 7 — 3i to 2z type

LAB 1
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z2=T—=3x%x% or z=T-—-31

The multiplication symbol * is optional between the imaginary part —3 and the complex
unit i.

Do not put spaces between the real part, the sign,
the imaginary part, the *, and the complex unit.

The display generated by the preceding command is
z =
7.0000 - 3.00001
To enter a matrix with complex entries use the same form as with real numbers and enter the

complex entries as above. (Note: the complex unit can be assigned any name and that name
used to form complex entries. However, MATLAB always displays i for the complex unit.)

Exercises 1.2

Enter the following matrices into MATLAB :
C= [1+5i 3 2~i ; 0 4-1 6i D= [7+21 ; 441

1. What is the display after you entered matrix C? Record it here:

2. Type each of the following commands and record the result next to it. (Try to predict
the result beforehand.)

a)C(1,3) —— b)C(l,:)—— ¢)C(2) . d)C(1,2:3) —
3. a) What matrix results after typing the command [C D]? Record the result here:

LAB 1
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b) Type the command [D C]. Is this the same as in part a)? Circle one: Yes  No.

4. The conjugate of a complex number a + bi is a — bi. Type help conj and then use conj
to compute the conjugate of the matrix C and the conjugate of the matrix D. Record
the results below.

5. Type help real. Use the real command to display the real parts of matrices C and D.
Record the results below.

6. Type help imag. Use the imag command to display the imaginary parts of matrices C
and D. Record the results below.

7. Let A be a matrix with all real entries, say, A = hilb(5). Write a short description of

the result of each of the following commands and explain why your result is correct.

a) conj(A)

b) real(A)

c) imag(A)

LAB 1
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Linear Systems

Topics: Row operations for solving linear systems; routine rowop; routine

vizrowop; routine symrowop; transpose operator; conjugate transpose;
size; who and whos; clear.

LAB 2
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Introduction

The ‘Rule of Three’ emerged in the 1990s as the paragon for mathematical instruction. The
rule states that, where possible, all topics should be considered from numerical, graphical, and
symbolical viewpoints. This lab demonstrates the Rule of Three for solving linear systems of
equations. Subsequent labs illustrate the rule in other settings. This lab expressly assumes
Section 1.1, namely the method for entering matrices into MATLAB .

Tacitly this lab assumes that linear systems in two or three variables have already been
solved by hand. Section 2.1 presents the first step in automating the process. Most students are
overjoyed to be relieved of the arithmetical precision that the reduction process requires. The
pumerical capability demonstrated by the routine rowop in Section 2.1 is augmented by the
routine vizrowop in Section 2.2. Vizrowop graphically displays the reduction process for 2 by
2 systems; the exercises suggest extensions to more general systems. Section 2.3 presents a sym-
bolic approach to solving linear systems based on the routine symrowop. Here the coefficients
are permitted to be parameters as well as numerical constants.

The final steps in the process of using MATLAB to solve systems of equations by elimination
are carried out in Lab 4. It is possible to proceed directly to that lab after this one has been
completed.

Section 2.1
Row Operations Using Routine ROWOP

Given a linear system CX = B we enter the coefficient matrix C and the right hand side
B into MatLAB . Then we form the augmented matrix A in MATLAB by typing
A=[CB|]

(Note: There is a space between C and B.) Now we are ready to apply row operations to the
augmented matrix to obtain a linear system that is simpler to solve. To aid in this process we use
the routine rowop, which permits us to concentrate on the strategy of the row reduction while
MATLAB performs the arithmetic. For a description of rowop type help rowop. Read the display.

To use rowop to solve a linear system the general procedure is as follows:

¢ Type the command rowop.

e Enter the augmented matrix.
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e Use the mouse to select row operations and to define data entries.

s Press ENTER after the last input item has been entered.

We apply this procedure to solve the linear system

21 — T2+ x3=28
z1 + 2z9 + 323=9
3z, — z3=3

<>ROWOP<> Current Matrix A

2418
ﬂ 1239
30413

K=

k * Row(i) + Row())

UNDO
Display Mode Help
Conmment Window
O Rational Restart
@ Deci Uit
_ by D.R.Hilf ecimal Q

Figure 1.

Initiate the routine by typing rowop. The directions on the screen provide instructions
for entering the augmented matrix. Here type 2 —1 1 8 1 23 9; 3 0 —1 3] and press
ENTER. This produces the rowop screen, which displays the Current Matrix A. See Figure 1.
Verify that the entries on your screen are correct. (If any entry is incorrect, click the Restart
button, press 1 to retrieve the entered matrix, make any necessary changes, and press ENTER.)
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We describe how to use the rowop screen to solve this system. The user chooses the proper
strategy at each stage from the three elementary row operations, then MaTLAB performs the
arithmetic. The goal is to convert the augmented matrix A to a simpler form to see if the
system of equations is consistent. If it is consistent, then it may be possible to ‘eliminate’ more
unknowns so that the solution can be read directly from the display. Box 1 describes the method
for applying the three elementary row operations.

As a first step, for the present system we want to produce an equivalent system with entry
A(1, 1) = 1. This can be achieved by the row interchange Row(1)<>Row(2). Following the
instructions in Box 1, click in the box beside i = under Row(i)<>Row(j), type 1, click in the
box beside j = , type 2, then press ENTER. Rowop performs the desired operation. A message
displays the row operation that was used to produce the Current Matrix A. Check the matrix
to verify that you have employed the correct strategy. If not, Box 2 describes how to correct
€rrors.

e To switch two rows use Row(i) < Row(j). Click in the box beside i =, type

the row number, click in the box beside j =, type the other row number, then
press ENTER.

e To multiply a row by a number use kxRow(i). Click in the box beside k =,
type the scalar multiple, click in the box beside i =, type the row number, then
press ENTER.

o To multiply a row by a scalar, add it to a second row, and replace the second
row by the sum, use k¥Row(i) + Row(j). Click in the box beside k =, type
the multiplier, click in the box beside i =, type the row number, click in the box
beside j =, type the other row number, then press ENTER.

Box 1.

If the Current Matrix A is not in the form you desired, it is possible to
return to the previous matrix by clicking the UNDO button.

Box 2.

The next step is to produce an equivalent system with A(2, 1) = 0. This is achieved by the
operation kxRow(i) + Row(j), with k = -A(2, 1), i = 1, and j = 2. Follow the directions in
Box 1 for entering these numbers in the boxes below kxRow(i) + Row(j) , then press ENTER.
It is important to enter the value of k in the form k = -A(j, j), as we shall demonstrate shortly.

Here, enter k = -A(2, 1), i = 1, and j = 2, then press ENTER. After performing this row
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operation, execute a similar row operation to produce A(3,1) = 0. Verify that the Current
Matrix is

1 2 3 9
0 -5 -5 -10
0 -6 -10 -24

To produce A(2, 2) = 1, use the elementary row operation k«Row(i) with k = 1/A(2, 2) and
i = 2. After MATLAB performs the operation the Current Matrix is

1 2 3 9
0 1 1 2
0 -6 -10 -—-24

To produce A(3, 2) =0 use keRow(i) + Row(j) with k = -A(3, 2), i = 2, and j = 3. The

resulting matrix is

1 2 3 9
01 1 2
00 —4 -12

This shows that the system is consistent. (Why?) Finally, execute row operations to produce
A(3,3) =1, A(2,3) =0, A(1, 3) =0, and A(1, 2) = 0. The resulting matrix A is

100 2
010 -1
001 3

It follows that the solution to this system is z; = 2,22 = —1,z3 = 3. Hence, this is the solution
to the original system of equations too. (Why?)

It is important that the value of the multiplier k be entered in the form k = A(i, j), even
though it is tempting to use the number displayed on the screen. To illustrate this point, let’s
solve the linear system

(1/3)z + (1/4)y=13/6
1/ + (1/9)y=59/63
Click on the Restart button. Define the augmented matrix A as
1/3 1/4 13/6; 1/7 1/9 b59/63

Perform the row operation kxRow(i) with k = 3 and i = 1. Instead of using matrix nota-
tion, perform k*Row(i) + Row(j) with k = -0.1429, i = 1, and j = 2. Notice that the goal
of producing A(2, 1) = 0 was not achieved because A(2, 1) = -0.00004286. The reason for the
discrepancy is that we used the screen display’s value of 0.1429 instead of the exact value of 1/7.

Click the UNDO button to return to the previous system. Then pei'form kxRow(i) +
Row(j) with k = -A(2, 1),i =1, and j = 2. The Current Matrix should now read
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1 0.75 6.5
0 0.003968 0.007937

Continue to solve this system using matrix notation. The solution is x1 = 5, z2 = 2.

<>ROWOP<> Current Matrix A
Row(i)<—=>Row(j) 113 114 136

177 19 59/63
m &

Kk ~ Row(ii + Row{)

E n i
i Il

Display Mode
Comment Window J—— N
_ ©M|!ma'
O Decimal
by D.R.HIll

UNDO

Help

Restart

Quit

Figure 2.

An alternate approach makes use of the rational display mode. The default representation
is decimal. Click the Restart button, then press the 1 key to retrieve the matrix A. (If
necessary, you can retype the matrix.) In the rowop screen, click the Rational button under
‘Display Mode.” The Current Matrix reflects the change, and it is possible to toggle between
the two modes this way. See Figure 2. This system can be solved using the following sequence

of elementary row operations.

e 3+ Row(1)
e (—1/7)x Row(1) + Row(2)
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e 252x Row(2)
o (—3/4)x Row(2) + Row(1)
Once again, the Current Matrix A yields the solution z; = 5,z = 2.
This completes rowop. We have shown how to use all three elementary operations for
solving linear systems that have a unique solution. The same kind of approach can be used
for inconsistent systems and systems having infinitely many solutions. To exit rowop click the

Quit button, then press ENTER to get the MATLAB prompt.

Exercises 2.1

In Exercises 1-4 use command rowop to solve the following systems of linear equations. Record
your answer below the system.

1. 2z1+ 20=3 2. 2z; — 3zx=1
321 + 4z =7 2] — 2x9=3
I = T2 = T = T9 =

3. 221 + 320 — 23=9
— 2z + 3xg=—5
] — 3+ 2x3=-3

Il = To = I3 =

4. 2y — 320 + 43 + 224=12
3z —4dxy — 23+ 23 =1
4z + Szo + x3 — 6y =21
Tl — Ts—2x3— x4=1

Iy = €2 = r3 = T4

Problems 5-7 introduce the transpose of a matrix. Most textbooks denote the transpose
of a real matrix A by either A* or AT. However in MATLAB we use A’.

5. In MaTLABtype A = [1 2 3; 4 5 6] . What matrix is displayed when you type
command A’?
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Record the result here:

6. Let A be the matrix in Exercise 5.

a) Type size(A). Type size(A’).
How is the size of A related to the size of A’?

b) How are the rows of A related to the columns of A’?

7. How is the matrix (A’)’ related to the matrix A7

Exercises 8 and 9 deal with complex numbers in MarLaB . Complex numbers are discussed in
Section 1.2 and that material should be referred to as needed. Enter the following matrix into
MATLAB :

C= [1+i 3 2—i ; 0 4—i i

8. Describe in words the result of command C'. (Hint: See Exercise 4 in Section 1.2.)

9. On a complex matrix the result of the prime (') operator in MATLAB is called the
conjugate transpose. ‘

a) If the matrix is real, its conjugate transpose is the same as the

b) Enter the following matrix into MATLAB :
Q= [1-2 3 2+i ; 0 4—3i & ; —5+i 6-2 3—i
Compute M = Q + Q' and record it.

M =

Compute P = @ — Q' and record it.
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Show that M = M’. (A complex matrix equal to its conjugate transpose is called
Hermitian.)

Show that P = —P’. (A complex matrix equal to the negative of its conjugate trans-
pose is called skew Hermitian.)

Show that Q = %(M + P).
Choose several other square complex matrices @ and verify that the preceding proper-
ties are still valid. If Q is a real square matrix are these properties still valid? Explain.

10. Use the command rowop to solve the following linear system with complex coefficients.

T — ’l::L'2=0
Ty — T3=—2

Record the solution to the system: z; = T2 =

11. In MATLAB each matrix currently defined is assigned a name. To determine the names
currently in use type command who. Also investigate command whos. Note that infor-
mation about the type of matrix, real or complex, is indicated. To remove a variable from
the current workspace, we use the clear command. Before using this command read the
information in help clear. Try these commands with your current session of MATLAB .

Solving Math Models] For each of the following word problems construct a linear system
that models the relationships described and solve that system. Assign variable names to the
quantities involved and use the problem data to develop equation relationships among the vari-
ables. Check to make sure that your solution makes sense within the context of the problem.

12. A gadget assembler currently works on two products, ‘whirlies’ and ‘flingers’. It takes
2/3 of an hour to assemble a ‘whirly’ and 4/5 of an hour to assemble the more intricate
‘Hinger’. The components for each whirly cost $4.90 and those for a flinger $6.50. How
many of each type of gadget can be made in 8 hours if the shop spends $61.90 on the
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components required. (Hint: Let z; = the number of whirlies produce and z3 = the
number of flingers. Set up a time equation and then a cost equation.)

13. A small investment club has $24, 000 to invest in three stock plans, named A, B, and C.
The club decides to invest twice as much in plan B as in plan C. The interest rates for
each plan are respectively 10%, 8%, and 6% and the interest earned at the end of the year
is required to be $2000. How much should be invested in each plan?

14. A parabola p(z) = ax® + bz + ¢ is to be constructed through points (1,2), (2,4), and
(4,14). Find the coefficients a, b, and ¢ so that p(1) = 2, p(2) = 4, and p(4) = 14.

To generate a graph of the parabola you have constructed proceed as follows. In MATLAB
enter the values of a, b, and ¢ into a row matrix p. Then type commands

x=0:.1:5;

y=polyval(p,x);
figure,plot(x,y)
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Section 2.2

Visualizing Row Operations

We have seen how rowop carries out the numerical details of elimination while permitting
you to focus on the strategy of the row reduction process itself. Now we take this process one
step further using the routine vizrowop to provide a geometric setting for the elementary row
operations.! The exercises at the end of the section play a critical role in assessing whether
you have achieved a firm understanding of the elimination process. Type help vizrowop for
instructions. Then type vizrowop to initiate the routine. We illustrate the process by viewing
what happens geometrically when the linear system ‘

3z + 4y=11
x+2y=>5

is solved numerically. As prompted, enter the augmented matrix (3 4 11; 1 2 5]. Ex-
amine the coefficients on the vizrowop screen. (If necessary, click the Restart button to make
any corrections.)

Vizrowop displays the graphs of the two lines. We are ready to begin the elimination process
and to view how the geometry forms the underpinning for the aigebra.

Box 3 summarizes the method for performing the three elementary row operations in vizrowop.

The operations are similar to those in the routine rowop.

e To switch the two rows click the button Row(1) < Row(2).

o To multiply a row by a number click the button kxRow(i), define
k and i, then press ENTER.

o To multiply a row by a number, add it to a second row, and replace
that second row by the sum, click the button k¥Row(i) + Row(j),
define k, i, and j, then press ENTER.

Box 3.

1The routine vizrowop is restricted to two linear equations in two unknowns.
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The first step for this system is to produce A(1, 1) = 1. One way to proceed is to switch
the rows, so click the button for ROW(1) & ROW(2). This produces a new screen in which
the rows are switched, so that the order of the equations is reversed. (See Figure 3.) Geometri-
cally, the graphs in the Current System remain the same as the graphs in the Previous System
because the equations have not changed at all. Look closer, however. Notice that the color and
the texture of the lines change to reflect the color coding with the corresponding equations.

Operations Visualizing Row Operations
Current System 4
Rowi1) <==> Row(2)]
125 N
_xrowo || 5, RNE N
K * ROVY(i) + ROV} 2} N
<>Input Regions<> A N
™
1 0 1 2
Previous System
@ Decimal 341 .
c] N
O Rational 125 TR
2t A N
unpo || weip || Restart || ouir s
1t

Comment Window

0 . A
-1 0 1 2

xecuted row op ROW(1) <==> ROW{2)

Figure 3.

by D.R.Hill

The second step is to produce A(2, 1) = 0 in the matrix. This is achieved by the elementary
row operation k«ROW (i} + ROW(j). Click on this button to open a section of the screen
called Input Regions. As indicated in Box 3, click the box beside k =, then type -A(2, 1).
Similarly, enter i = 1 and j = 2, then press ENTER. The matrix reflects this change. This
row operation causes a crucial geometric change, one that lies at the heart of the elimination
process: the graph of the second equation becomes a.horizontal line. Notice that the two lines
meet at the same point as the lines in the Previous System.
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The next step, to produce A(2, 2) = 1 in the Current System, is achieved by the elementary
row operation k* ROW (i). So click on this button, define k = 1/A(2, 2) and i = 2, then press
ENTER. The resulting graphs remain the same, which is not surprising. (See Exercise 3.)

The final step is to produce A(1, 2) = 0 by the row operation k«ROW (i) + ROW(j).
Predict how the graphs will change.

The graph of the first equation will

The graph of the second equation will

Now let vizrowop perform the numerical and graphical steps. The effect of this elementary
row operation is to convert the graph of the first equation to a vertical line. Once again the
point of intersection of the lines remains fixed. The screen now depicts the solution in two ways.
Numerically the matrix yields z = 1,y = 2. Graphically the intersection of the horizontal line
y = 2 and the vertical line z = 1 is the point (1, 2).

Box 4 summarizes the geometric effects of each elementary row operation on a system of two
equations in two unknowns (assuming the lines are not parallel). It also describes the overall
process.

e When the order of the equations is reversed the graphs remain the
same but their colors and texture change.

e When a row is multiplied by a scalar the graphs remain the same.

e When a row is multiplied by an appropriate scalar and added to a
second row, the graph of the equation corresponding to the second
row becomes either a vertical line or a horizontal line.

e Overall, the process of elimination converts a system of two lines
that meet at a point to a system with one horizontal line and one
vertical line that meet at the same point.

Box 4.

Not all linear systems of two equations in two unknowns meet at one point. The exercises
consider the other possibilities. To exit from vizrowop click the QUIT button, then press
ENTER for the MATLAB prompt.
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Exercises 2.2

Explain what happens geometrically when each of the following row operations is per-
formed on a system of three equations in three unknowns:

a) Two rows are interchanged.
b) A row is multiplied by a nonzero scalar.

c) A scalar multiple of one row is added to a second row, and the sum replaces the second
TOW.

Explain what happens geometrically when a linear system of three equations in three
unknowns is converted to an equivalent system in which as many variables as possible
have been eliminated from the equations.

. Explain why it is ‘not surprising’ that multiplying an equation by a nonzero scalar does

not change the graphs of the system.

Use vizrowop to solve each system and to visualize the geometric process of elimination.
Describe how the geometry reveals the number of solutions.

S
b) o e,
) et on s
Q) T
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5. Use vizrowop to view the geometric process of elimination in solving the following system

(1/3)z + (1/4)y=13/6
(1/7)z + (1/9)y = 59/63

a) Use rational display.

b) Use decimal display.

Section 2.3

Symbolic Row Operations

MATLAB can perform symbolic manipulations, provided you have the Symbolic Math Toolbox.
In this section we exploit such capabilities for solving systems of equations. The routine sym-
rowop, an instructional m-file accompanying this manual, has been developed for this purpose.
We first discuss symrowop, then provide an example to illustrate its use. This is followed by a
sequence of exercises to further explore row operations.

To begin, type help symrowop for instructions regarding the use of the routine. Notice
that symrowop is restricted to matrices of size at most 5 X 5 and that matrix notation cannot
be used to define the value of k in row operations k*Row(i) + Row(j) or k*Row(i).

In MATLAB symbolic matrices are matrices whose entries are symbolic expressions like 5 + b,
sin(t), b—3*c, a/(b+¢), or ¢ A3. A simple type of symbolic matrix that we encounter
later has all of its entries numerical values except one entry is a single letter like a. Symbolic
matrices are entered much like numeric matrices: enclose the entries in square brackets, with
commas separating entries and semicolons separating rows. However to inform MATLAB the
matrix is symbolic we must enclose the square brackets in single quotes and precede this with
the designation sym. For example, the command

A = sym('[a,5 * b,1 — ¢;0,¢/d, f]')
produces output
A=

[ a, bxb, 1-c]
[ 0, ¢/4, f]
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If any matrix entries are expressions then the operation symbols +, —, %, /, and A must be explic-
itly indicated. A common mistake is to type 5b instead of 5 * b; multiplication must be explicitly
indicated. Parentheses are highly recommended so that the order of operations is clearly indi-
cated. For instance % should be entered as (a * b)/c.

Now we apply symrowop to a specific problem. Consider the linear system

-2z +y=1
cx+y=2

Geometrically, it is advantageous to write the equations of the system in slope-intercept form:

y=2zx+1
y=-—cr+2

The graph of the first equation is a line with slope m = 2 and y-intercept b = 1. The graph of
the second equation is a line with slope m = —c¢ and y-intercept b = 2. Since the lines will meet
whenever they are not parallel, the linear system is consistent provided ¢ # —2. Example 1 uses
symrowop to obtain this result symbolically, and then to extend it.

Example 1. Find all values of ¢ for which the following linear system is consistent.

2z +y=1
cx+y=2

Find the solution of the system when it is consistent.

To initiate the routine type symrowop. Then enter the augmented matrix for the system
by typing sym(‘{—2, 1,1; ¢, 1,2]’). The symrowop screen resembles the screen for rowop, so
the use of the elementary row operations should be familiar. The first step is to produce A(1,1)
= 1, so multiply Row(1) by ¥ = —1/2. This yields

{ 1 -1/2 —1/2]
c 1 2

The next step is to produce A(2, 1) = 0, which is achieved by the operation k*Row(i) +
Row(j), withk = -¢, i = 1, and j = 2. Remember that you cannot use k = -A(2, 1). This yields

1 -1/2 -1/2
0 1/2xc+1 1/2%xc+2
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<SYMROWOP> current Matrix

Row(ij<==>Row{) M, 12, -1i2]

B [0, 1i12*c+1, 1/2%c+2]
1125c+1)

k=

WARNING: multipliers can NOT use matrix addresses like 1/A{2,3).

mision; denominator assumed not ZERO.

£ (£

nowledge restriction; click on CONTINUE.

Figure 4.

See Figure 4. Now, multiply Row(2) by £k = 1/(1/2 % c + 1). As soon as you press the Tab key
or click in the box beside i = routine symrowop detects that you are actually dividing the
entries of the second row by (1/2 % ¢ + 1) and displays a message that this value is assumed
to be different from zero. A confirmation of this requirement must be made by clicking the
‘CONTINUE’ button that appears. No row operation will be performed until you click on this
button. (See Figure 4.) After you acknowledge this restriction, click in the box beside i = ,
enter 2, and press ENTER. MATLAB displays the matrix

1 —1/2 ~1/2
0 1 (c+4)/(c+2)

The restriction that (1/2 % ¢+ 1) # 0 warns you that this row operation can be performed
numerically only when ¢ # —2. This result confirms the conclusion obtained by the geometric
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reasoning above. The symbolic capability allows you to extend the result by producing A(1, 2)
= 0. This yields the reduced form

10 1/(c+2)
0 1 (c+4)/(c+2)

This matrix means that if ¢ # —2, then the solution of the given system is & = 1/(c + 2) and
y={(c+4)/(c+2).

Exercises 2.3

1. What is the output of each MATLABR command?
a) b =sym('[z;y;0]')
b) b =sym('[z — 1,-2; -3,z — 4]’)
c) b=sym(’[1,2,3,0;4,5,6,0;7,8,¢,0])

2. Write a MATLAB command to define the given matrix.

a)M=[-12 _63 —05]

5—x -8 -1
b) C= 4 -T7—-z -4
0 0 14—z
5—2z —8 -1 0
c) AUG = 4 -7—-z -4 0
0 0 4—z 0

In Exercises 3 to 8 find all values of ¢ for which the system is consistent. Find the solution of
each consistent system.

z+2y=1

3z + cy=5 Solution(s):
3¢ +ey=-1 7 Solution(s):
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3z + y=1 _ . .

5. ez + 4y =0 c= Solution(s):
6. o0 YT ! c= Solution(s):
T 3 +y=-1 B '

3z + y=5 _ . .

7. 6z + 2y =c c= Solution(s):
6r - 3y=c _ . .
8. 4 — 2y —12 c= Solution(s):

9. Find all values of ¢ for which the system (i) is inconsistent, (ii) has a unique solution, (iii)
has infinitely many solutions.

N e s, O (i) (i)
by =T y=-2 4 (ii) (iif)

z—(c2-3)y=c

10. Determine the value(s) of ¢ such that the matrix is the augmented matrix of a consistent
system.

a)r1—3 ¢
-2 6 -5

-10—2
b)_—21 5} €=

11. Determine the value(s) of ¢ such that A is the augmented matrix of a consistent linear

system,
1 2 3
A = 4 5 5 Cc =
7 8 ¢

LAB 2




20 LAB 2

12. Determine the value(s) of ¢ such that A is the augmented matrix of a consistent linear
system,

{
00 M
- o
Q oW

e

l

<< NOTES; COMMENTS; IDEAS >>
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Matrix Operations

Topics: Matrix operations in MarLaB (4, —, *,); transpose of a matrix; commands

eye, ones, zeros, polyval, rand, randn; display formats; an application
on population growth.
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Introduction

Here we introduce fundamental matrix operations in MATLAB together with several useful
commands for generating special types of matrices.

Section 3.1 shows how to add, subtract, and multiply matrices in MATLAB . (There is no
operation of division of matrices.) If the matrices involved are not compatible for the operation,
then MATLAB will display an error message. We also explore how to multiply a matrix by a scalar,
compute powers of a matrix, and take the transpose of a matrix.

Section 3.2 introduces MATLAB commands for generating special matrices. These commands
are useful because we need not enter the individual elements of these special matrices. A number
of exercises informally deal with ideas that play important roles later.

Section 3.3 discusses options for displaying matrices in decimal and fraction form.

Section 3.4 employs a model of population growth to illustrate the use of matrix multiplica-
tion for predicting long term behavior.

Section 3.1
Matrix Algebra
In MATLAB type
matops

You will see a display of the matrix operations available in MATLAB . In the case of addition and
subtraction of matrices the form of the MATLAB operation is the same as in your text. However,
there are variations in multiplication, scalar multiplication, exponentiation, and the transpose.
Table 1 shows the book form and the MATLAB form.

The matrix sum A + B and the matrix-vector product A * b have geometric visualizations
that enhance an understanding of the algebraic operations. We describe here three later sections
that can be covered now in conjunction with the current section; they do not require any further
prerequisites.

The matrix sum A + B has a simple interpretation as the diagonal of a parallelogram when
A and B are column matrices {or row matrices) with two entries. The routine lincombo, pre-
sented in Section 7.1, exploits this interpretation.

The matrix-vector product A * b of an m x n matrix A and an n x 1 vector b can be inter-
preted as a linear transformation from R™ to R™. Section 12.1 explores this interpretation. A
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particular case of such a product is developed in Section 13.1, where the routine matvec views
the product A % 2 of a 2 x 2 matrix A times a 2 X 1 vector « as a linear transformation from a
point 2 on the unit circle to another point A * & on the unit circle.

Book Form MarLaB Form

matrix sum A+ B A+ B
matrix difference A—B A—-—B
matrix products AB AxB
scalar multiple tA tx A
powers AF ANk
transpose oriz; A’
Table 1.

MATLAB has a command to evaluate polynomials. Let p(z) = 22° + 4z — 7, then define a row
(or column) vector of coefficients of p(z) as [2 0 4 — 7]. The polynomial must be arranged in
decreasing powers of the variable and note that if a term is missing we assign a zero coeflicient to
its position. Example 1 shows how to use the MATLAB command polyval to compute the value
of a polynomial at a given x-value and at a set of values. It also shows how MATLAB can be used
to draw the graph of a polynomial.

Example 1. Compute p(—1) for p(z) = 2z° + 4z — 7. Evaluate p(z) for the set {-2,-1,0,1,2},
and draw its graph in the interval [-2, 2].

To calculate p(—1), enter the following commands in MATLAB :

p=[204-7]
x =-1

¥y = polyval(p,x)

Check by hand that p(—1) = —13. To evaluate p(z) for the given set, enter the members of the
set as a row matrix before applying the polyval command:

x=[2-1012]
y = polyval(p,x)
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Again check by hand that p(—2) = —31, p(0) = —7, p(1) = —1, and p(2) = 17. To graph
p(x) over {—2,2] enter the following commands: (The first command defines a vector of values
starting with —2 in steps 0.1 to 2 which are used as x-values for the graph generated by the plot
command.)

x= -2:0.1:2;
y = polyval(p,x);
- poly(x,y)

Example 1 showed how to evaluate a polynomial at a row matrix corresponding to a set of
x-values. We can evaluate a polynomial p(z) at a square matrix of any size. For instance, for
p(z) in Example 1 and

1 2 3
A=}10 0 4
0 0 0
to compute p(A) we compute the expression 2A3 + 4A — 71 where
10 0]
I={0 10
0 0 1|

In MATLAB we use the following commands:

A=[123;004;000];I=eye(3);
2%A"3+4*A-T*1
which produces the result

-1 12 34
0 -7 16
o0 0 -7

Verify this result by hand. It is instructive to point out that the command polyval(p,A) can
not be used to evaluate 243 4+ 4 A — 7I. To demonstrate use vector p from Example 1 and the
preceding matrix A in command

B=polyval(p,A)

-1 17 59
This command produces B = | —7 —7 137 |. The command polyval(p,A) evaluates
-7 -7 -7

p(x) at each entry of A. For more information on this command, consult help polyval. See
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also the command polyvalm.

Exercises 3.1

1. To gain experience with matrix operations proceed as follows. Type
matdatl

This command loads a set of matrices so that we can perform MATLAB operations. You will
see the matrices displayed on your screen. To see MATLAB display them type their names:
A, B, C, D, x. If you forget what matrix names you have used type who. Command who
displays the names of matrices currently in use. (The matrices in matdatl are shown
here for ease of reference. An alternate set is available by using command matdat2).

With the matrices from routine matdatl compute and record the results of the fol-
lowing matrix expressions in the space provided. If an operation is not defined, state

why.
5 -2 1 2 2 3 1 -1 2
A= 1 0 4 B=| —1 4 1 C = 0 1 4
-3 7T 2 5 -3 0 -5 3 6
-2
-1 2 3
D=[ 0 4 5] T = 3
1
A+ B= B—D=
AxB = Bx A=
DxC = C' =
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4.

Cxax= THRT =
' xx = ((A=—B)xz) =
A? = AxA=
6xD = 5¥A—~3*xB=

Enter each of the following matrices into MATLAB . Exercises 2-3 refer to these matrices.

13 -1 2 1 s 4 3 -2
A=|2 4| B=| 4 -2 C=[_53] D=|1 0 5
3 1 7 -1 2 -1 6

. Perform the following matrix algebra computations in MATLAB . Record your result below

the expression.

a) A+ B b) B+ C c)D=xA d)2xA—-3xB e) A’ f) C?

Perform each of the following matrix algebra statements in MATLAB . Briefly describe the
action taken in each part. Warning: these are not the standard matrix operations.

a) A.x B

b) A./B

c) AN3

Enter each of the following matrices into MATLAB . To enter a complex number like 2 — 34
type 2 — 3 %1 (or 2 — 34) with no spaces intervening. Then compute the indicated matrix
algebra statements in MATLAB . Record your result below the expression.
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144 3 -1 2—3i L
E=|2—i 442i| F=|4a+i —2 Gzl2 +5f
3_i 14 7—1 —1 -
a)E+ F b) F+G c)G+E
d)2+*E—3xF e) E f) G2

. Let A and X be the matrices defined below.

6 —1 1 10.5

A=|0 13 -16 X = 210
0 8 -11 10.5

a) Determine a scalar » such that AX = rX. r=

5+ 2¢
3 — 41

b) Compute AX — rX for the value of » from part a).

c) Is it true that A’X = rX for the value of  determined in part a)?
(Circle one:  Yes No)

Let A and X be the matrices defined below.
’ —-7.5 8.0 16.0 4
A=| —2.0 25 4.0 X=11
—2.0 2.0 4.5 1

a) Determine a scalar r such that AX =rX. r =

b) Compute AX — »X for the value of » from part a).

c) Is it true that A’X = rX for the value of r determined in part a)?
(Circle one:  Yes No)
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7. Use MATLAB to evaluate each polynomial p(&) at the endpoints of the given interval, draw
the graph of p(x) over the interval using the procedure in Example 1, and evaluate p(x)
at the given matrix.

1 000
23 00
a) p(z) =222 —z + 1, [-2,2], A= 45 60
7 8 90
p(=2) =
p(2) =
p(4) =

b) p(z) = 23 — 222 + 2, [—1, 3], A:[ ; Z l

p(-1)=

p(3) =

p(A) =

8. Every square matrix A has a polynomial associated with it called the characteristic
polynomial® of A, which can be obtained using the MATLAB command poly(A). (Warn-
ing: do not use command polyval.)

'In Lab 13 we formally define the characteristic polynomial of a matrix and use it to determine particular
information about a matrix
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5 -8 —1
a) Let A= 4 -7 —4
0 0 4

What is the characteristic polynomial p(x) of A?

Evaluate p(A)
7 —4 0
b) Let A=| 8 —5 O
-4 4 3

What is the characteristic polynomial p(z) of A?

Evaluate p(A)
c) Use the following commands to randomly generate a 3 X 3 matrix A with entries which
are whole numbers.
rand(’state’, sum(100 * clock))
A=fix(10*rand(3))

What is the characteristic polynomial p(z) of A?

Evaluate p(A)

d) Make a conjecture about the result p(A), where A is any square matrix and p(x) is
its characteristic polynomial.

e) Verify your conjecture in part (d) on a 4 X 4 matrix B and on a 5 X 5 matrix
C. Use commands B=fix(10*rand(4)) and C=fix(10*rand(5)), respectively, to
obtain randomly generated matrices. Was your conjecture verified? Explain.

9. Evaluate the polynomial p(z) = 5a® + 3z? — 2 + 4 for A= by hand:

SO+
[~~~
(=B~}
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p(A) =

Verify your answer by using appropriate MATLAB commands involving symbolic matrices
as in Lab 2.3. Record the MATLAB commands you use below.

Section 3.2

Generating Matrices

The n X n identity matrix is denoted I,,. MATLAB has a command to generate I,, when it is
needed. The command eye behaves as follows:

eye(2) displays the 2 X 2 identity matrix

eye(5) displays the 5 X 5 identity matrix
t=10;eye(t) displays the 10 X 10 identity matrix
eye(size(A)) displays the identity matrix the same size as A

Two other MATLAB commands, zeros and ones, behave in a similar manner. The command
zeros produces a matrix of all zeros, while command ones generates a matrix of all ones.
Rectangular matrices of size m X n can be generated using commands

eye(m,n), zeros(m,n), ones(m,n)

where m and n have been previously defined with positive integer values in MATLAB . For example
to generate a column with four zeros use command

zeros(4,1)
or
m=4;n=1;zeros(m,n)

MATLAB can generate random numbers in several ways. Type rand and then use your up-
arrow key to repeat the command several times. Command rand produces random values in
the interval (0,1). Command randn; uses a random number generator that produces values on
either side of zero in a manner known as normally distributed with variance one. (See help
rand and help randn for more details.) Type randn and repeat the randn command until
you get a value greater than 2 or less than -2.

The commands rand and randn have variations just like those for eye, ones, and zeros.
To experiment type the following commands and then construct several of your own.
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rand(4,1)

rand(3, 6)
rand(size(eye(3)))

In our work it is often convenient to be able to easily generate matrices for use in exercises
or to check conjectures about matrix properties. The rand and randn commands give us real
matrices usually with entries which are not whole numbers. The command

fix(rand(5))
generates a 5 X 5 matrix with integer entries which are obtained by rounding the entries of the
matrix produced by rand(5) to the nearest integer towards zero. (For more information on fix
use help.) Often the matrix produced by the command fix(rand(k)), where k is an integer
denoting the size of the matrix desired, contains many zeros. One way to obtain fewer zeros is
to multiply each element by 10 before ‘fixing’ it. Command
fix(10+rand(5))
performs this task. To obtain a 5 X 5 complex matrix type the commands

i = sqrt(—1); C = fix(10xrand(5)) + i»fix(10xrand(5))

Use the arrow keys to recall the previous command and edit it to obtain a 3 X 3 complex matrix.
The command randn can be used in place of rand in the preceding discussion.

M

Exercises 3.2

1. Enter each of the following matrices into MATLAB .

4 3 -2
C=[_; g] D=1|1 0 5
2 -1 6

Enter each of the following MATLAB commands and carefully analyze the display gener-
ated. Make certain you understand the behavior of each command. For new commands
use help for a brief description. Write a brief description of the action of the commands
in the space provided.

a) 5*eye(2) b) eye(2) + ones(2)

¢) ones(size(C)), zeros(size(C)), C + ones(size(C))
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d) D, diag(D), diag(diag(D)) ) diag([-3 4]), diag([ 5 -7 1])

f) D, triu(D) g) D, tril(D)

a)

b)

<)

d)

e)

f)

g)

. In each of the following construct a MATLAB command to generate the matrix described.
For example, a row with five ones is generated by ones(1,5). Record your command in
the space provided. (Do not explicitly type the entries of the matrix described.)

a) A column with 8 ones.

b) A row with 10 threes.

¢) A 5 X 5 matrix with a
diagonal of all sevens.

(2 1 1
d) Thematrix | 1 2 1
11 2
[ 5 -1 -1
e) Thematrix | —1 5 -1
-1 -1 5

Construct a MATLAB command to generate the » X m matrix A which has a;; = 1 for
%t # j, aii = 1 — n. Demonstrate your command for cases n = 3,5,8. Record your
command below.
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4. Repeat Exercise 3, but for matrix B which has b;; = 1 for i # j, bi; = 1/n.

5. The description for generating random matrices with integer entries given above used the
fix command. MATLAB has commands ceil, floor, and round which can be used in place
of fix. Use help to obtain a description of these commands.

a) Apply each of the commands to values 2.8, 3.2, and —1.5 to observe their behavior.

b) Generate several random integer matrices using each of these commands.

6. Generate matrix A from command A = ceil(10%rand(5)). Use MATLAB to verify each
of the following.
a) § = A+ A’ is symmetric.
b) T = A — A’ is skew symmetric.
c) A is the same as %S + %T.
d) ior L = tril(A,—1), D = diag(diag(A}), and U = triu(A,1), L + D + U =

7. Experiment: Investigate the form of the product of two diagonal matrices. -

a) In MATLAB do the following: A = diag ([1 2 7 ]), B = diag([ -3 4 2]).
Compute A*B. Inspect the ‘form’ of the result.
Complete the following statement: A*B is a matrix.

b) In MarLAB do the following:
A =diag([4 3 2 —-1]),B=diag({0 1 5 -3]). Compute AxB.
Inspect the ‘form’ of the result.
Complete the following statement: A*B is a matrix.

¢) Conjecture: The product of two diagonal matrices is a matrix.
(Try to prove your conjecture for nXn diagonal matrices.)

8. Experiment: Investigate the form of the product of two lower triangular matrices.

a) In MarLaB do the following:
A = tril{fix(10xrand(3))), B = tril(fix(10xrand(3))). Compute A*B.
Inspect the ‘form’ of the result.
Complete the following statement: A%B is a matrix.
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b) In MaTLaB do the following:
A = tril(fix(10+rand(5))), B = tril(fix(10*rand(5))). Compute A*B.
Inspect the ‘form’ of the result.
Complete the following statement: A*B is a matrix.
c) Conjecture: The product of two lower triangular matrices is a
matrix. (Try to prove your conjecture for nxn lower triangular matrices.)
9. In Exercise 8 replace lower triangular by upper triangular and tril by triu and
repeat the experiments. Conjecture: The product of two upper triangular matrices is a
matrix.
10. Experiment: Investigate the form of the product of mXn matrix A times column & of
size n X 1.
2 —4 5
a) In MaTLABlet A = 0 1) anda= [ _8 ] Compute A * .
-3 0
2 -4
Axz=Fk 0| + k2 1 | = kicoly (A) + kacola(A)
-3 0
Determine k3 and k2. ky = ko =
10 4 0
b) In MatLABlet A= | 2 1 -1 |anda = 3 |. Compute A * .
32 5 -2
1 0 4
Asxz=k | 2| +ka| 1 |+ks| —1 | =Ekicolh(A)+ kacola(A) + kgcolz(A)
3 2 5
Determine ki, k2 and k3. k1 = ko = ks =
¢) Matrix A = (ai;) is 3x4 and column @ = (xx) is 4X1. Express the product A * x
in terms of the elements of = and the columns of A.
Axx =
d) Conjecture: The product A is a sum of the of A with coefficients
which are the of . (Try to prove this in general.)
L E— M
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Section 3.3

Display Formats

MATLAB stores matrices in a decimal form and does its arithmetic computations using a
decimal-type arithmetic. This decimal form retains about 16 digits, but not all digits must be
shown. In between what goes on in the machine and what is shown on the screen are routines
that convert or format the numbers into displays. Here we give an overview of the display for-
mats that we will use. (For more information type help format.)

If the matrix contains all integers then the entire matrix is displayed as integer values; that
is, no decimal points appear. ‘

If any entry in the matrix is not exactly represented as an integer, then the entire matrix is
displayed in what is known as format short. Such a display shows 4 places behind the

decimal point and the last place may have been rounded. The exception to this is zero. If an
entry is exactly zero, then it is displayed as an integer zero. Enter the matrix

Q=[5 0 1/3 2/3 7.123456 .00000197 ]

into MATLAB . The display is

Q=

5.0000 0 0.3333 0.6667 7.1235 0.0000

To see more than 4 places, we change the display format. One way to proceed is to use command
format long

which shows 15 places The matrix Q above in format long is

Q =
Columns 1 through 4

5.00000000000000 0 0.33333333333333 0.66666666666667
Columns 5 through 6

7.12345600000000 0.00000197000000
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There are other display formats that use an exponent of 10. They are format short e and
format long e. The ‘e-formats’ are often used in numerical analysis. Try these formats and
display matrix Q.

MATLAB can display values in a fraction form using format rat, short for rational display. To
make rational form easier to display we have written another command, rational, that produces
the same result as format rat shown above.

Inspect the output from the following sequence of MATLAB commands.

format short
v=[1 1/2 1/6 1/12|]

displays
vV =
1.0000 0.5000 0.1667 0.0833
The command
rational(V)
displays
ans =

i 1/2 1/6 1/12

Warning: Rational output is displayed in what is called string form. Strings cannot be
used with arithmetic operators. Thus rational output is for ‘looks’ only.

When MATLAB starts, the format in effect is format short. If you change the format, it
remains in effect until another format command is executed. Some MATLAB routines change the
format within the routine. For further information use help format.

Since MATLAB has pull-down menus, changing formats can be done choosing the Options
menu and then Numeric format.

Exercises 3.3

2/3 5/8 11/3
4/5 3 -5
commands to observe the various format displays. Carefully note the differences in these
display formats.

1. Enter matrix A = into MATLAB . Execute the following sequence of
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a) format short, A b) format short e, A c) format long, A

d) format long e, A e) rational(A)

2. Enter the following commands and observe how the display of the columns vary with the
long and short formats.

format short, A = rand(8)
format short e, A

format long, A

format long e, A

format short

3. Use command help hilb. Display the 5 x 5 Hilbert matrix in each of the display formats.
Note that the format short display rounds to get the displayed fourth decimal place.

I

Section 3.4
An Application: Population Growth

Suppose a species of animal can live to a maximum age of two years. Suppose also that the
number of males is a fixed percentage of the female population. Thus, in studying population
growth of this species we can ignore the male population and concentrate on the female popu-
lation. We shall keep track of the number of living females of ages 0,1,2 (age zero means age
less than 1) by defining a population vector containing entries that represent the population
of each age group in millions.

Let the initial population vector be

14.5
IP=| 15.3
11.3

This means that initially there are 14.5 million females of age 0, 15.3 million of age 1, and 11.3
million of age 2.

In order to determine how the population changes we need to know the birth and survival
rates for each age class of females. This information for our animal is as follows.

# of new age zero =
.559x%# of current age zero +.6% # of current age one +.1* # of current age two

Survivors:
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# of new age one = .7T* # of current age zero

# of new age two = .3 # of current age one

The numbers .559, .6, and .1 are the birth rates for the age groups respectively and the numbers
7 and .3 are the survival rates for ages zero and one respectively. This information is modeled
by the system of three equations given above. In matrix form this system is

559 .6 .1 # of current age zero # of new age zero
T 0 0 # of current age one = # of new age one
0 .3 0O # of current age two # of new age two

Call the coefficient matrix above A. The matrix A is called a transition matrix. It follows
that the population vector after one year is given by

PT1 = A *IP (3.1)

Perform this operation in MATLAB and record the result below.

PT1 =

. =

Similarly the population vector after two years is
PT2=AxPT1 (3.2)
Perform this operation in MATLAB and record the result below.

[ i

PT2 =

An alternate way to get vector PT2 is to substitute (3.1) into (3.2):

PT2 = A*PT1 = A » (A » IP) = A%IP

Thus
PT2 = A%IP (3.3)

The expression in (3.3) gives PT2 in terms of the transition matrix A and the initial popu-
lation vector IP. Continuing in this way, substitute (3.3) into the formula PT3 = AxPT2 to
get
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PT3 = A%IP (3.4)

By following this pattern of substitution the population vector after N years, denoted PTN
is:

PTN = ANIP (3.5)
To use equation (3.5) in MATLAB with N = 3 type

PT3 = A"3«IP

Perform this operation and record the result.

PT3 =

Next use the up arrow 1 to recall the command and then edit it to calculate population vectors
at other times. Replace the exponent 3 by 4. Then

PT4 =

Repeat the procedure to compute

PT5 =

In MatLAB form the population matrix
PM = [PT1 PT2 PT3 PT4 PT5]
Do the entries in the rows of PM seem to be forming a pattern? (Circle your choice.)
YES NO UNSURE

Look at the first row of PM. The entries represent the number of females of age zero for five
successive years. Do these numbers seem to be stabilizing? :
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YES NO UNSURE
To gain a geometric perspective on the last two questions type
plot(PM’)

This particular snapshot indicates the following tendencies on the right-hand side of the screen.
The top curve, which represents the population of females of age zero, is nearly horizontal,
indicating that it is approaching a stable population. But the middle curve, which represents
females of age one, seems to be decreasing slightly, while the bottom curve, which represents
females of age 2, seems to be increasing slightly.

To gain a broader view, let’s see what happens over the next 5 years; that is a total of 10
years. Press any key to get back to the command screen. Use the up arrow 1 to edit command
lines to compute PT6, PT7, PT8, PT9,and PT10. Next append these additional population
vectors to PM by typing command

PM = [PM PTé PT7 PTS8 PT9 PT10]

Type the command plot(PM’) again. Notice that now each of the curves levels out towards
the right, indicating that each population is reaching a ‘steady state’.

What are these steady states?

To answer this question press a key to return to the command screen. The population matrix
PM should still be displayed. (If not type PM.) Examine the first row. The entries form a
sequence. What appears to be the limit of this sequence?

What appears to be the limit of the sequence of second entries?

What appears to be the limit of the sequence of third entries?

To test your conjecture compute PT15 and PT20. From this evidence, what conjecture would
you make for the steady state population vector?

Recall that MATLAB has display modes for the screen information. Change the mode to for-
mat long and display PT15 and PT20. Would you change your conjecture?
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What then is the steady state population? We will show how to determine this later. How-
ever, experiment to determine it using the tools you have now. State your result below.

Exercises 3.4

1. Let A be the transition matrix and IP be the initial population vector defined below.

.21 .64 .12 14.5
A= .69 0 0 IP = | 15.3
0 .36 0 11.3
Compute PT10: Compute PT11:

Does it appear that the process is reaching a steady state? Circle one:
YES NO UNSURE

2. Let A be the transition matrix and IP be the initial population vector defined below.

868 4 .2 14.5
A= 3 0 O IP=| 153
0 .2 0 11.3
Compute PT10: Compute PT11:

Does it appear that the process is reaching a steady state? Circle one:

YES NO UNSURE
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3. A retail store R has 55% of the market versus 45% for the lone competitor C. An adver-

tisement firm predicts that an ad campaign will draw 20% of C’s customers to R, while
R will lose only 15% of their own customers to C. Write the initial population vector IP.

IP =

Fill in the entries of the transition matrix A, where A(%, 7) is the percentage share that
is drawn from store i to store j.

Compute PT10: Compute PT11:

Does it appear that the process is reaching a steady state? (Circle one.)

YES NO UNSURE

4. Every day a manager rates the performance of each member of her staff as poor, average,

or excellent. If a worker was rated poor on one day then the probability that on the next
day the worker will be rated poor is .2, average is .7, and excellent is .1. If a worker was
rated average on one day then probability that on the next day the worker will be rated
poor is .3, average is .4, and excellent is .3. If a worker was rated excellent on one day
then the probability that on the next day the worker will be rated poor is .1, average is
.7, and excellent is .2. Initially 256% of the workers were excellent, 65% average, and 10%
poor.

(i) What percentage was rated excellent after 30 days?
(ii) What percentage was rated excellent after 365 days?

(iii) What percentage will be rated excellent in the long run?

(Hint: Complete the construction of the transition matrix below, then form the initial
distribution. Proceed as in the population model given in this section.)
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P

Tomorrow A

E

Today

P A E
2
7
1

Transition Matrix

P =poor
A = average
E = excellent
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<< NOTES; COMMENTS; IDEAS >>
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Homogeneous Systems,
Echelon Forms, and
Inverses

Topics: solving homogeneous systems using rowop; finding general solutions; Seeiﬁg
the reduced row echelon form as a movie and then step-by-step; using rowop

to get the reduced row echelon form; inverses from reduced row echelon form
computations; inverses; command invert.
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Introduction

This lab is crucial because it introduces routines that will be used in every other lab and
project. Moreover, it explains and illustrates the algorithmic nature of the reduction process for
converting a matrix to reduced row echelon form.

Section 4.1 uses the routine rowop, introduced in Lab 2, to write the general solution of
a homogeneous system of linear equations. This routine is the first step in the automation of
the reduction process that was first carried out with pencil and paper. When using rowop the
student can concentrate on the strategy and leave the arithmetic to MATLAB .

Section 4.2 presents the middle and final steps. The middle step involves the routine
rrefquik, which allows the student to view the algorithmic nature of the process of reduc-
tion without being confronted with any strategic decisions. If rrefquik is regarded as a video
on reduction, then rrefview and rrefstep present the viewer with two alternate, slow-motion
performances. In fact rrefview, which shows reduction frame-by-frame, provides a type of com-
puter visualization in a very unusual context.

The final step is MATLAB routine rref, which immediately computes and displays the reduced
row echelon form. (rref is a black-boz, that is, a routine which presents an answer with no hint
of the underlying process.) We could have begun with this routine but our aim is for the student
to understand the workings of the reduction process before taking this giant step. Section 4.3
shows how to apply rref to compute the inverse of a matrix. Here too we could have taken a
black-box approach by introducing an appropriate MATLAB command but we chose instead to
present a method that reinforces the meaning of the inverse of a matrix.

Ultimately the routine rref will become a student’s most useful tool. It is used to study
every concept in the rest of the course. However, we will see situations (for instance, in Lab 8
on determinants) where rowop is more appropriate.

Section 4.1
Homogeneous Systems

To solve the homogeneous linear system

2x1 — 3z9 — 5x3=0
z1 — 229 — 4x3=10
— 3z + 422 + 623=0

in MATLAB execute routine rowop and enter the augmented matrix

[2—3«50;1—2—40;—3460]
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Select appropriate row operations until you produce the following equivalent angmented matrix:

10210
01310
00010

To write out the general solution of the corresponding homogeneous system proceed as follows.

The ‘reduced’ homogeneous system is

Y + 223 =0
29 4+ 3x3=0

There are 3 unknowns, but only two equations. Hence one unknown can be chosen arbitrarily.

Usually the unknown(s) in columns without leading ones are chosen arbitrarily. Here, let

x3=r
where r is any real number. Then working from the last equation upward we have
T9 = —3xz3=-3r
z3 = —2x3=—-2r
Hence the general solution (that is, the set of all solutions) is given by

T1 —2r -2
X=|zg |=] =3 |=7r] -3
T3 r 1

For practice find the general solution of

3z1 + z2+ 223=0 — 271 + 329 + da3 + 4x4 =0
— 42y + z3=0 and :tl + 2z3 =0
2z, + 2x0 + 523=0 5x1 — 6z — 63 — Bzy =0

Record your solutions here:

General solution of first system:

General solution of second system:
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Exercises 4.1

Use rowop to find the general solution of the following homogeneous system of linear
equations. Record your solution next to the linear system.

3z1 — 229 + 1223=0
1+ o — x3=0
2¢1 + 20+ x3=0

Use rowop to find the general solution of the following homogeneous system of linear
equations. Record your solution next to the linear system.

— 2x) + 329 + 43 + 424=0
) - 2:!73 =0
521 — 229 + 423 — 8x4=0

Use rowop to find the general solution of the following homogeneous system of linear
equations. Record your solution next to the linear system.

T + 229 + 323=0
4r1 + 5z + 6z3=0
Tz; + 829 =0

Use rowop to find the general solution of the following homogeneous system of linear
equations. Record your solution next to the linear system.

Ty — x93 + 223 + x5=0
201 + x99+ 23+ 24+ x5=0
z1 + 2 + 224 + 225=0

The routine symrowop, introduced in Section 2.3, can be used to solve homogeneous lin-
ear systems in which coefficients contain a parameter. In Exercises 5 to 7 use symrowop
and record the restrictions you acknowledge. From these restrictions determine which
values of parameter ¢ produce a system with more than one solution. Hint: substitute
each value of ¢ into the system to form the corresponding numeric matrix and use rowop
to solve the linear system.
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(c+ 2)x1 + 2x2=0

5. . . :
271 + T2=0 Restrictions
cC=
3z1 + 12.’1.‘2 =0 L. .
6. -2z + (c2 —9)z2=0 Restrictions:
c=
cry + T+ 3z3=0
7. 2T+ x4+ 3z3=0 Restrictions:
4y + 2z9 + (c+9)z3=0
c=
— -]

Section 4.2

Reduced Row Echelon Form

The reduced row echelon form of a matrix is obtained by the systematic application of row
operations to transform the matrix to be as close to an identity matrix as possible. Hence row
operations are chosen to introduce as many zeros as possible. As the reduction (or elimination)
process progresses zeros are obtained above and below certain matrix entries. Such entries are
called pivots or pivot elements and the row containing them is called the pivot row.

To illustrate the ‘zeroing out’ of entries in the process of obtaining the reduced row echelon
form of a matrix execute the following MATLAB commands. This demonstration should give you
a feel for the process.

A = fix(10*rand(10,6))
rrefquik(A)

Repeat this demonstration several times. (To see the reduction with rational displays, precede
the rrefquik command with format rat; afterwards type format to reset the format to short.)
Note that many columns eventually look like columns of an identity matrix. MATLAB is automat-
ically choosing row operations to eliminate entries and obtain an equivalent matrix which is in
reduced row echelon form. (The phrase “reduced row echelon form” is often abbreviated rref.)
That is, the final matrix satisfies the following properties.

LAB 4
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All zero rows, if any, come last.

The first entry of a nonzero row is 1.(This is called a leading 1 of
the row.)

*

e In each nonzero row, the leading 1 appears to the right and below
the leading 1 in preceding rows. (Eventually the leading 1’s appear
as a staircase downward to the right.)

Any column in which a leading 1 appears has zeros in every other
entry.(That is, such columns are columns of some identity matrix.)

To illustrate more slowly the reduction to rref and the properties listed above enter the
following MATLAB commands. The routine rrefview gives a frame-by-frame look at the reduction
process.

A=(0 000123 412 -5 630 2 1
rrefview(A)

In order to produce the rref without MATLAB routines making the decisions we use rowop.
Routine rowop requires that you choose row operations to produce the reduced row echelon form
or the row echelon form. rowop performs the arithmetic of the row operations for you so that
you may concentrate on the logical decisions involved. Use rowop to find the rref of the follow-
ing matrix A and record your result next to A.

3 0 21
A=|12 3 4
1 2 -5 6

To check your results you can use rrefquik or rrefview.

Warning: When using rowop it is often convenient to use expressions for
the multipliers. Within rowop the matrix being transformed is named A,
regardless of the name assigned to the matrix outside of rowop. Hence a
multiplier could be written in the form —A(2,1)/A(1,1). This is especially
valuable when the entries are in decimal form. This procedure will assure
that you are using the correct value and not a four-decimal approximation.

Find the rref of matrix C below using rowop and construct the multipliers for the row
operations using the convention discussed above. Record the result in the space provided.
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rref of C=

|
B e = Y
A
[~ R = RN

There are many different ways to choose row operations to apply to matrix A to obtain its
reduced row echelon form, but the end result must be the same. The reduced row echelon form
of a matrix A is unique. If you need help in practicing the selection of row operations to get the
reduced row echelon form of a matrix, use help to obtain a description of routines rrefstep,
which provides a step-by-step explanation, and rowech, which provides detailed checking of
your work in the reduction process.

The reduced row echelon form of a matrix will be needed for a wide variety of future topics.
The reduced row echelon form will be used to obtain information about the matrix itself which in
turn will imply that the situation or problem modeled by the matrix will have certain properties.
Hence we need a quick way to obtain the reduced row echelon form of a matrix A without
supplying the detailed steps of the reduction process. For such purposes we use the command
rref. Enter the matrix A given below into MATLAB , then command rref(A) displays its reduced
row echelon form. Record the result next to matrix A.

4 2 -1 0
2 -1 3 4
A= 2 3 -4 -4
5 -1 0 O

The rref command is so useful throughout this manual that we single out its format.

The command rref(A) produces the reduced row echelon form
of a previously defined matrix A.

The rref command automates the reduction steps that you can perform using routine rowop.
The same relationship exists between routines symrref and symrowop; that is, symrref au-
tomatically produces the reduced row echelon form of a symbolic matrix S. (See Section 2.3.)
When used in the form

[B R] = symrref(S)

B will contain the rref of § while R is an ‘informational matriz’ listing the quantities assumed
not zero in the reduction process.! The information displayed in R can be used to gain insight
into the solution set of a linear system. See Example 1.

1T he restrictions displayed do not necessarily imply that the system has no solution if they are violated. Rather
the restrictions listed were used along with a certain set of row operations to obtain the rref. Interchanging the
order of the rows in the matrix could lead to a different set of restrictions used in the reduction process.
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Example 1. Determine the values of parameter a for which the linear system

(3+a)z; + 2z + 3z3=4
~T31+ To— T3=-2
z9 +azxg=0

is inconsistent.

In MATLAB we form the symbolic matrix that represents the augmented matrix of the linear system
and then use routine symrref to display the restrictions required to perform the reduction. The
following commands perform the task and their results are shown as they appear in MATLAB .

S=sym(’ (3+a, 2, 3, 4;-1, i, -1, -2;0, 1, a, 0]?)

S =

[3+a,2, 3, 4]
[ -1’1’-13_2]
[ 0,1, a, 0]

[B Rl=eymrref(S)
B =

[1, 0, 0, 2«x(4*a-1)/(6+a)/a]
[Oa 1; o’ '2*‘(1"'3)/(6"3)]
[0, 0, 1, 2*(1+a)/(6+a)/a]

R =

L RESTRICTIONS:]
£ The following]
[are assumed not zero.]
( 3+a]
[ (5+a)/(3+a)]
[ (6+a)*a/(5+a)]
[ ]
[ ]

From the contents of matrix R above we see that it was assumed that
a# -3, a# -5, a#0, a#—6
To determine which of these values lead to an inconsistent system we substitute the value into

matrix S, convert it to a numeric matrix, and determine the rref. The following commands show
how to do this and display the result for the value a = —3.
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P=subs(S,’a’,-3) Ysubstituting -3 for a and naming the matrix P

0 2 3 4
-1 1 -1 -2
0 1 -3 0

rref (P) %finding the rref
ans =
1.0000 0 0 2.8889
0 1.0000 0 1.3333
0 0 1.0000 0.4444

The rref displayed above indicates that the linear system is consistent when a = —3. The above
commands can be combined into a single command:

rref(subs(S, 'a’, —3))

In this case only the rref will be displayed. To fully answer the question in this example we must
investigate the behavior when a is —5, 0, and —6. For a = —6 we have

rref (subs(S,’a’,-6))

1 0 -5 0
0 1 -6 0
0 0 0 1

Hence the linear system is inconsistent for a = —6.

Enter the symbolic matrix S into MATLAB . Determine if the system is inconsistent for a = —5
and a = 0 using commands as illustrated above. Record your results below.

For @ = —5 the system is . For a = 0 the system is

Describe the set of values for a which make this system inconsistent:
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Exercises 4.2

1. Use rowop to find the reduced row echelon form of each of the following matrices. Record
the rref below each matrix.

3 -1 2 2100
41 2

1 2 4 1210

1=/ 56 ¢z = _1351) C3= 0121

4 16 001 2

2. Use rref to find the general solution of the following homogeneous system of linear equa-
tions. Record your solution next to the linear system.

T1 — x93 + 223 + z25=0
2vy + 294+ 23+ T4+ 25=0
T + Z2 + 2z4 + 225 =0

3. Let A be the coefficient matrix in Exercise 2. Compute rref(A) and rref(A’). Are they
the same? Record both results in the space provided.

4. Construct a 4 x 4 matrix with two rows the same, but not all zeros. Compute its rref.
Explain why there is a row of zeros in the rref.

5. Let A be an n X n matrix, & a column matrix of size n x 1, and r a scalar. The matrix
equation Az =rz arises in a variety of applications (see Lab 13). To solve this matrix
equation we must determine both a column z and a scalar r. Here we show how to solve
for  when r is known. Using matrix algebra we convert the matrix equation into an
equivalent form so that we can solve a homogeneous linear system for .

Az =rz <+ Az—rzx=0 < Az—rlz=0 < (A—rDz=0

LAB 4



LAB 4 1

This means that = is a solution of Ax = »ra if and only if = is a solution of the ho-
mogeneous system (A — rI)}a = 0. Hence to find # we find the rref of (A — rI) and
determine the general solution.

Find the general solution of the corresponding homogeneous system in each of the following
using rref. Record your result below the expressions.

1 2 0 -2 1
a) A= and 7 = 3. b)A=|1 3 -1 |andr=1.
21 0 0 1

. In the population models discussed in Section 3.4, it can be argued that a steady state

exists only if the matrix equation AX = X has a nontrivial solution X. Use the approach
in Exercise 5 to determine the steady state when the transition matrix is

559 6 .1
A= 7 0 0
0 3 0

Record the steady state vector in the spaee provided.

Determine the values of parameter a for which the linear system

221 + z2+ 3z3="7
(a - 1).’1:1 + 4xy + 223=17
o+ 2z3=a

is inconsistent. Deseribe your procedure and summarize the results.

LAB 4
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3ry + 1229 =0

8. Determine all values of parameter ¢ for which the linear system %1 + (&% — 9)ap =0

has more than one solution.

1+ T — r3=2
9. Determine all values of parameter c for which the linear system ) + 2z + z3=3
z1+ 22+ (C2 —5)z3=c

has more than one solution.

10. Quantities 21, 2, and z3 are all non-negative and are related by the system of equations

1+ @2+ dxz=20000
50z1 + 95z2 + 14523 =1000 * m
—I +  2x3=0

Determine the largest value that parameter m can have so that the system is consistent.
Describe your procedure and summarize the results in the space below.

Section 4.3

Inverses

To determine if an n x n matrix A has an inverse, just apply rref to the matrix [A|L,].
Enter the matrix A into MATLAB and use the command

rref([A eye(size{A))])

If A is transformed into I, then I,, will have been transformed into A~!; otherwise A is singular
(that is, not invertible). For practice find the inverse of each of the following:

LAB 4
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13
12 0 110
Al=}01 -1}, A2=|0 11
10 1 1 01
Record your results here:
inverse of Al = , inverse of A2 =

The exercises contain two other ways to compute matrix inverses in MarLas . Carefully note
the MATLAB commands for future use. The results contained in Exercise 6 are especially revealing.

M

Exercises 4.3

1. Use the rref command to find the inverse of each matrix below. Put the results in the
space provided.

Ll S A
oo -
- O
—_ S -
S =
— -

2. There are several routines for computing the inverse of a matrix. One of these is the
command invert. Type help invert for directions. This command employs rref and
just avoids the requirement of appending the same size identity matrix. Use invert to
determine which of the following matrices are nonsingular. Beside each matrix record if
it is singular or nonsingular. Record the inverse if it is nonsingular.
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p—t
[ ]

c) C= d) D=

1

-3

oo N

O W

e = T —
1

- b

(o JING; §

oo w

O~
oo GN
Ne o
= =3 R e
N OOt
L oo O ow
[ =Rl = N )

3. The command invert in Exercise 2 is not as efficient as it could be. MATLAB command
inv uses a different strategy for computing inverses that we do not study in detail. Find
the inverses of the matrices in Exercise 2 using inv and compare the results with those of
Exercise 2. (Warning: MATLAB does not use exact arithmetic and for some matrices inv
may display a message indicating potential inaccuracies may be present.)

4. If B is the inverse of an n X n matrix A then AB = BA = I,, assuming that exact
arithmetic is used for the computations. If computer arithmetic is used to compute the
product AB, then the result need not equal I, and in fact AB need not equal BA.
However, both AB and BA should be close to I,,. Use the invert command from
Exercise 2 in the form B = invert(A), then compute the products AB and BA in
MaATLAB for the following matrices.

1 1

%‘ 11 155

2 1 1 1 1

2) 1 b);l ©) |33 i
3 4 2 1 1 1

3 4 35

5. If A is a nonsingular (invertible) matrix the solution of the linear system Az = c is
x = A !c. Solve each of the systems below by TWO methods: first using rowop and
second using the invert command as described above. Compare the two solutions; are
they the same? Briefly describe any differences in the space below.

1 2 4

2 § 3 2
a)A=|0 %2 §|, c=

0 0% 1

—-L_—-T for i, j = 1, 2,...,10 and c is the first column of

b) A= [agj], where Q5 = i«l—j

LAE 4
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I,o. To generate A use MATLAB commands
for i=1:10,for j=1:10,A(i,j)=1/(i+j-1);end,end,A

6. Let A be a nonsingular matrix. The linear system Az = b can be solved in MATLAB in
several ways. (Assume A and b have been entered into MATLAB .)

(i) rref([A b)) becomes [I x].

(ii) Compute A~1, then @ = A™1b. In MATLAB we use command

x = invert(A)*b or x = inv(A)*b

(iii) MATLAB is designed to solve linear systems of equations. Hence it has a special
command for this purpose. The command is \ which invokes an algorithm other than
rref or inv. To use this command enter x = A\b.

One way to compare these methods is to count the number of arithmetic operations they
require. In MATLAB we call the arithmetic operations floating poini operations. MATLAB
has a command, flops, which counts such operations. (For more information use help.)
In the following comparisons we use the Hilbert matrix (see command hilb) for the coef-
ficient matrix A and a column of all ones for . Use the following commands, changing
n to the appropriate value for the matrix size, to get flop counts for the three methods.
Record the flop counts num1l, num2, and num3 in the table.

n = 5;A = hilb(n);b=ones(n,1);
flops(0);rref([A b]);numl = flops
flops(0);x = inv(A)*bsnum2 = flops
flops(0);x = A\bsnum3 = flops

n rref inv \
5

10

25

You should find that using \ is cheaper (fewer flops) hence faster and in numerical analysis
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courses it is shown that \ usually gives more accurate results. The message from the
preceding table should be clear: to solve nonsingular linear systems use \.

7. Determine the values of the parameter k that makes the following matrix invertible.

11 2
A=j2-k 0O 1
0 5 k+12

Describe your procedure and summarize the results in the space below. (Hint: use sym-
rref.)

8. Find all values of parameters ¢ and d which make the matrix l g (cz } invertible.

c c¢c+1 ¢+2
9. Find all values of parameters ¢ which make the matrix | ¢+2 ¢ ¢+ 1 | invertible.
c+1 ¢e¢+2 ¢
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A Vector Space Example
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Introduction

A vector space V is a set of objects, called vectors, with two operations. It is standard to
use the name ‘addition’ for one operation and to denote it by &. It is also standard to use the
name ‘scalar multiplication’ for the other operation and to denote it by ®.

One purpose of this lab is to show that caution must be exercised when using these terms and
symbols. Another purpose is to clarify several parts of the definition of a vector space that tend
to get overlooked when only ordinary operations of matrix addition and scalar multiplication
are used.

There are ten properties in the definition of a vector space. We will examine each property
separately for the examples considered here. You can use MATLAB to help you determine whether
a given property is true by experimenting with several different vectors and scalars. If you find
a vector or pair of vectors for which a property does not hold then that property is not true.
However, to show that a property is true you must use a general written argument that the
property holds for all vectors in V and, if they are needed, for all real scalars. The box below
summarizes this discussion.

MATLAB can only be used to show that a property is NOT true by generating
particular matrices for which the property does not hold. To show that a
property is TRUE you must supply an argument developed by hand that
holds for all vectors and, if necessary, for all real scalars.

Section 5.1

Experimenting with Vector Space Properties

For this section the set V will consist of all 3 x 3 real matrices.

|V = all 3 x 3 real matrices|

You can randomly generate a 3 x 3 matrix A with integer entries by typing the following com-
mand in MATLAB :

A = fix(10xrandn(3))
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The next time you want another 3 x 3 matrix use the same command but name the matrix
something other than A.

The operations on the set V will be defined in terms of MATLAB operations. Addition is
defined by

{A®B=AxB|

Notice that this operation has two parts, a penod and an asterisk. This is ‘addition’ in V, even
though it resembles multiplication.

Now generate two 3 X 3 matrices A and B in MarLaB . Then type A.*B to determine the
action that takes place. Do this enough times on different pairs of matrices so you can describe
the operation @ in words. Record your description of this ‘addition’ operation here.

There are five properties in the definition of a vector space that deal with @ alone. We will
examine each property separately. If you feel that property (1), (2), or (3) holds you must show
that it is true for arbitrary matrices by dealing with general entries. (That is, you can not use
matrices with particular numerical entries to verify that the property is true.) If you feel that
it is not true then you must supply specific matrices and verify that the property fails on these
matrices.

(1) The operation & is closed on Vif A @ B isin V for all 3 x 3 matrices A and B.

(2) The operation @ is commutative on Vif| A @ B = B @ A|for all 3 x 3 matrices A and B.

LAB &
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(3) The operation & is associativeon Vif | A B)d C=A¢o (B & C) | for all 3 x 3 ma-
trices A, B, and C.

(4) V has the

zero property if there is a 3 x 3 matrix Z such that | A ® Z = A{for each 3 x 3

matrix A. If V has this property then you must list nine specific entries for the matrix Z which
will work with every matrix A.

(5) V has the

inverse property if for each 3 x 3 matrix A there is a 3 x 3 matrix X such that
, where Z is the matrix found in (4). If V has this property then you must begin

|A®X=Z
with a general

= 2.

3 x 3 matrix A, then list nine specific entries for the matrix X so that A @ X

The operation of scalar multiplication is defined by

cOA=c+ A
| |

Notice that ‘scalar multiplication’ looks like addition here.

LABS
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Now generate a 3 X 3 matrix A and choose any scalar c. Then type ¢ + A to determine
the action that takes place. Do this enough times on different matrices and scalars so you can
describe the operation ® in words. Record your description of this ‘scalar multiplication’ oper-
ation here.

(6) There is one property in the definition of a vector space that deals with © alone. The oper-
ation @ is closed on Vif ¢ ® A is in V for all 3 x 3 matrices A and all real scalars c. If you
feel that V is closed you must show that it is true for an arbitrary matrix A and an arbitrary
real scalar c. If you feel that it is not true then you must supply a specific matrix and a specific
scalar where ¢ ® A is not in V.

There are two properties in the definition of a vector space that tie together the two opera-
tions @ and ®. Both properties look like the familiar distributive laws.

(7) This property is

c®O(A®BY=(c® A)® (c© B)

The MATLAB version becomes c+(A.xB) = (c+A).*(c+B). If you feel that this property holds
you must show that it is true for arbitrary matrices A and B and an arbitrary scalar c. If you
feel that it is not true then you must supply specific matrices and a specific scalar and verify
that it fails.

LAB §
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(8) This property is

c+d0A=(coA)a(doA)]

Notice that the first operation on the left-hand side of this property is ordinary addition of
real numbers. The MATLAB version becomes (c+d)+A = (c+A).x(d+A). If you feel that this
property holds you must show that it is true for an arbitrary matrix A and arbitrary scalars ¢

and d. If you feel that it is not true then you must supply a specific matrix and specific scalars
¢ and d, and verify that it fails.

(9) This property ties together ordinary multiplication of real numbers with the operation ®:

(cd) ®A=c®(dO A)

The first operation on the left-hand side is ordinary multiplication of real numbers. If you feel
that this property holds you must show that it is true for an arbitrary matrix A and arbitrary
scalars ¢ and d. If you feel that it is not true then you must supply a specific matrix and specific
scalars ¢ and d, and verify that it fails.

(10) This final property concerns the scalar 1.

If you feel that this property holds you must show that it is true for an arbitrary matrix A. If
you feel that it is not true then you must supply a specific matrix A and verify that it fails.

Is V with @ and © a vector space? YES NO (Circle one.)
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Section 5.2

More Experiments with Vector Space Properties

For this section the set V' will consist of all 2 x 1 matrices with positive entries. The operations
on the set V' will be defined in terms of MATLAB operations. Addition is defined by

lvow=v*w]

where v and w are in V. Notice that this operation has two parts, a period and an asterisk.
This MATLAB operation performs entry-by-entry multiplication, but we use this as our addition
operation.

Exg.mple 1. Forv = l 3 ] and w = [ 1?2 ] we have
W =viw= [ M ] - [ 1) }
Scalar multiplication on V is defined by
kov=v."k

where v is in V and k is a real scalar. Notice that this operation also has two parts, a pe-
riod and the exponentiation symbol, a carat. This MATLAB operation performs entry-by-entry
exponentiation of the entries in v to the kth power.

Example 2. For k=1/2 and v = [ 136

. 161/2 4
k@v—v.k—[ g2 | = | 1739
The question is,

“Is V with the operations @ and © as defined above, a vector space?”

] , we have

There are a total of ten properties to be checked. Numerical experiments with the operations of
@ and ® can provide you with evidence that a property may be valid. However to claim that a
property is true you must verify the result for all vectors v in V' and all real scalars k. In order
to show that a property is invalid, you can show that the result is not true for specific vectors
in V or real scalars.

For each of the following circle the appropriate response. Supply evidence that supports your
choice.

LAB §
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1. V is closed under addition using & True  False
2. & is commutative on V. True  False
3. @ is associative on V. True  False

4. V has a “zero vector”; that is, there is a vector z in V so that for all v in V
[voz=v]

True  False

5. V has an “inverse property”; that is, for a vector v in V there is a vector @ in V so that,
where z is the “zero vector” from (4).

True  False

6. V is closed under ®. True  False

LAB S
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7. |kO(v®w)=(kOv)® (k®w)|for all v and w in V and any real scalar k
True  False
8. } (k+t)Oov=(kOv)® (t®v)|for all vin V and any real scalars k and ¢
True  False
9. ((kt)Ov=k©® (t ®v)|for all v and w in V and any real scalars k and ¢
True  False
10. For the scalar 1, for any vector v in V. True  False

Is V with © and ©® a vector space? Yes No (Circle one)
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<< NOTES; COMMENTS; IDEAS >>
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Linear Combinations

Topics: linear combinations; span; linear independence and linear dependence; basis. I
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Introduction

The notion of a linear combination is fundamental to a wide variety of topics in linear algebra.
The ideas of span, linear independence, linear dependence, and basis center on forming linear
combinations of vectors. In addition, elementary row operations are essentially of the form
‘replace an existing row by a linear combination of rows’. This is clearly the case when we
add a multiple of one row to another row. From this point of view it follows that the reduced
row echelon form and the row echelon form are processes for implementing linear combinations
of rows of a matrix. Hence the MATLAB routines rowop and rref should be useful in solving
problems that involve linear combinations.

Here we discuss how to use MATLAB to solve problems dealing with linear combinations (Sec-
tion 6.1), span (Section 6.2), linear independence, linear dependence (Section 6.3), and basis
(Section 6.4). The basic strategy is to set up a linear system related to the problem and ask
questions like,

¢‘Is there a solution?’

‘Is the only solution the trivial solution?’

It is important to recognize that the technique for deriving the appropriate linear system will
vary according to the type of vectors involved.

Sections 2.1 and 4.1 are essential for this entire lab. In addition, Section 6.5, which makes use
of routine symrowop to illustrate how the basic concepts can be handled when the augmented
matrix is symbolic, depends on Section 2.3.

Section 6.1

Linear Combinations

Given a vector space V and a set of vectors S = { X1, X2, ..., Xj } in V, determine if X,
belonging to V, can be expressed as a linear combination of the members of S. That is, can we
find some set of scalars ¢, ¢2, ..., cx so that

a1 Xa +eoXo+ - +epXp=X

There are several common situations which we illustrate by example and then provide a summary
of the method employed.

Example 1. Let X1= (1,2,1,~1), X2= (1,0,2,—-3), and Xg= (1,1,0,—2). Determine if the
vector X= (2,1,5,—5) is a linear combination of X1, X2, and Xs.
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Form the expression

3
ZC_,'X,' =1 X1+ X+ 3 Xz =X
=1

and find the corresponding linear system to solve for the ¢;. We have
a(1,2,1,-1) + ¢2(1,0,2,-3) + ¢3(1,1,0, -2) = (2,1,5, —5).
Performing scalar multiplications and adding corresponding entries gives
(€1 + cg + ¢3,2¢1 +¢3,¢1 + 2¢2,—¢1 — 3¢z — 2¢3) = (2,1,5,-5)

Since the two vectors are equal, we equate corresponding entries to obtain the system of equations

c1+ 2+ 3= 2

2¢4 + 3= 1

¢ + 2¢ = 95

—C] — 362 - 263 =-5

The matrix form for this linear system is Ae = b where

1 1 1 . 2
2 0 1 ! 1
A= . 2 ol°c= Zz ,and b= 5
-1 -3 -2 8 -5

Wote: the columns of A are the transposes of the original vectors.

Enter A and b into MATLAB and then use command

rref([A b))

to give
ans =
1 0 0 1
0 1 0 2
0 0 1 -1
0 0 0 0

Recall that this display represents the reduced row echelon form of an augmented matrix. It
follows that the system is consistent with solution

c1=1, cg=2, c3=-1
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Hence X is a linear combination of X3, X2, and X3, with

X1+2Xs—-Xg=X.

El Strategy summary for linear combinations of rows.

If the vectors X; in S are row matrices, then we construct a linear system whose coefficient
matrix A is

-Xl T

A= X2 =[x x - XT]
-Xk

and whose right-hand side is X7. That is, the columns of A are the row matrices of set S

1 T
converted to columns. Lete=1|¢; e -+ ¢ ] and b = X7, then try to solve the linear
system Ac = b using rowop or rref in MATLAB . If the system is shown to be consistent, having
norowsof theform | 0 0 .. 0 | ¢ ] , ¢ # 0, then the vector X can be written as a linear

combination of the vectors in S. In that case the solution of the system gives the values of the
coefficients. Caution: Many times we need only determine if the system is consistent to answer
that X is a linear combination of the members of S.

1 -1 1 3
Example 2. Let X3 = | 2 [, X3 = 1, X3=1]51{,Xy= 0 |. Determine if
1 3 5 )
1
X = | 0 | is a linear combination of X;, X3, X3, X4.
2

Form the expression

4
ZCij = X1 +eXet+aXg+ceaaXa=X
=1

and find the corresponding linear system to solve for the ¢;. We have

1 -1 1 3 1
ct| 21| +es 1 |4+e3| 5 +es 0(=1]0
1 3 5 -5 2

Performing the scalar multiplications and adding corresponding entries gives
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c1 —cg+ ¢3+ 3c4 1
2¢1 + ¢y + Ses =10
c1+ 3¢z + Hes — Bey 2

Since the two vectors are equal, we equate corresponding entries to obtain the system of equations

c1— ¢+ c3+3cu=1
2¢) + ¢ + 5cg =0
c1+ 3¢y +Beg — Beg =2

The matrix form for this linear system is Ac = b where

1 -1 1 3 a 1
A=|2 15 0, e= z: ,andb=| 0
1 35 -5 iy 2

ﬁ\iote: the columns of A are just the original columns.

Enter A and b into MATLAB and then use command

rref([A b])

to give
ans =
1 o 2 1 0
0 1 1 -2 0
0 0 0 0 1

Recall that this display represents the reduced row echelon form of an augmented matrix. The

bottom row indicates that the system is inconsistent. Hence X is not a linear combination of
Xl, Xz, Xa, and .X4.

[II. | Strategy summary for linear combinations of columns.

If the vectors X; in S are column matrices, then just lay the columns side-by-side to form the
coeflicient matrix

A=[X1 Xy - x,c]

and set b = X . Proceed as described in .
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|III. | Strategy summary for linear combinations of polynomials.

If the vectors in S are polynomials, then associate with each polynomial a column of coefficients.
Make sure any missing terms in the polynomial are associated with a zero coefficient. One way
to proceed is to use the coeflicient of the highest powered term as the first entry of the column,
the coeflicient of the next highest powered term second, and so on. For example,

1 1 0
24+2aA+1 — |2 2?24+2 — {0 3t-2 —> 3
1 2 -2

The linear combination problem is now solved as in @

Example 3. Given matrix P = }1 § g . To associate a column matrix as described above

within MaTLAB , first enter P into MATLAB , then type command
X = reshape(P,6,1)

which gives

DWOON D -

For more information type help reshape.

|IV. ] Strategy summary for linear combinations of m x n matrices.

If the vectors in S are m x n matrices, then associate with each such matrix A; a column Xj;
formed by stringing together its columns one below the other from left to right. In MATLAB this

transformation is done using the reshape command. Then we proceed as in .

-1 01 6 3 0 -7 8 14
Example4.LetM1~[ 41 0],M2=[1 9 0],M3=l26 ~11 17],M4=

-1 -2 0  eng | -14 -4 3], o
[ 3 4 -1 ] Determine if M = [ 13 -5 1| 8@ linear combination of M1, M2,
M3, M4,
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After entering the matrices, type commands
X1 = reshape(M1,6,1); X2 = reshape(M2,6,1);
X3 = reshape(M3,6,1); X4 = reshape(M4,6,1);
X = reshape(M,6,1);

Then command rref([X1 X2 X3 X4 X]) gives

ans =
1 0 0 0 3
0 1 0 0 -2
0 0 1 0 0
0 0 0 1 -1
0 0 0 0 0
0 0 0 0 0

Hence M is a linear combination of M1, M2, M3, M4. In fact we have

3xM1 — 2+ M2—- M4 =M

Exercises 6.1

l.Letvg=[4 2 1] ,v2=[-2 3 1] ,andwg = [2 —11 —4] . Determine if each of
the following vectors u is a linear combination of v1, vz, and vg. If it is, then display the
linear combination by supplying the coefficients and appropriate operations.

a)u=[6 5 5 Circleone: Yes No u=__ v w2 _vg
b) u= {10 —15 -5 Circle one: Yes No u= v Vg Vs
cu=1[9 -175 -6 Circle one: Yes No u= v Vp VU3
1 0 3
-1 2 1 . .
2. Letv, = a2 | va=| | and vg = ol Determine if each of the folowing vectors
4 1 2

u is a linear combination of vy, vz, and va. If it is, then display the linear combination
by supplying the coefficients and appropriate operations.
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[ 11
a) u = _:]; Circle one: Yes No w= ViV vg
| 13
[ 1
b) u = (1) Circleone: Yes No mw=__ v1__ve_ w3
1

3. Let p1(t) = 263 +t — 1, po(t) = t2 + 2t, and p3(t) = +2 — 2 + 3¢ + 2. Determine if each
of the following vectors g(t) is a linear combination of py(t), pa(t), and ps(¢). If it is, then
display the linear combination by supplying the coefficients and appropriate operations.

a) qt) =4t +t -1 Circle one: Yes No gq(t) = —_p1(t)—p2(t)__ps(t)
b) g(t) = ¢ Circle one: Yes No gq(2) = —_p1(t)—_p2(t)—_ps(t)
c) q(t) =43 -3t + 5t +3 Circleone: Yes No q(t) = __p1(t)__p2(t)—_ps(t)

1 2 2 2

vectors u is a linear combination of vy,v2, and vs. If it is, then display the linear
combination by supplying the coefficients and appropriate operations.

4. Let vy =l 21 }, v2 =[ i (1) ], and vs ={ 01 ] Determine if each of the following

a)u = {1) (1) ] Circleone: Yes No uw=__v,__ vy w3
3 -1 .
b) u = o 1 Circle one: Yes No wu = Vi Vo Vg
1 -2 .
c)u =[ _3 _3 ] Circleone: Yes No u=__wv;___ve w3
3 -1 0 2
5. Let A = 2 1 2 0 . Express the following linear combinations as a product of a
-4 2 31

vector and matrix A in an appropriate order by finding a column vector « such that Az
gives the linear combination or row vector y such that yA gives the linear combination.
(Note: See Exercise 10 in Lab 3.2.)
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a) —2xcol;. A+3xcolpA—colgA+4xcols A

b) 3*coly A — colgA + 5 * colg A

c) 2*row; A — 4 xrowzA + 3 xrowzA

d) —5xrowi A +2x rows A

6. Let A be an m x n matrix and X be a n x 1 matrix. Explain how to write the product
A % X as a linear combination of columns of A.

7. Let A be an m X n matrix and X be a 1 X mu matrix. Explain how to write the product
X * A ss a linear combination of rows of A.

8. Let S = { v1, vz } where v1= [;] and vg= [ 1_:_1:].

a) Write vector 1= [ ] as a linear combination of the elements of S.

2+1

1= v+ V3

b) Write x3= [ i

] as a linear combination of the elements of S.

To= v+ v2

M
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Section 6.2

Span

There are two common types of problems related to span. The first is:
Given a set of vectors § = { X3, X3, ... , X; } and a vector X, is X in span S?

This is identical to the linear combination problem addressed above because we want to know
if X is a linear combination of the members of S. As shown in Section 6.1 we can use MATLAB
in many cases to solve this problem.

The second type of problem related to span is:

Given a set of vectors 8 = { X1, X3z, ... , X } in vector space V, does span S = V?

Here we are asked if every vector in V can be written as a linear combination of the vectors in
S. In this case the corresponding linear system has a right-hand side which contains arbitrary
values that correspond to an arbitrary vector in V.

For the second type of spanning question there is a special case that arises frequently and
can be handled in MATLAB . (The following discussion uses ideas presented in detail later.) The
dimension of a vector space V is the number of vectors in a basis, which is the smallest number
of vectors that can span V. If we know that V has dimension k and set S has k vectors, then we
can proceed as follows to see if span S = V. Develop a linear system Ac = b associated with
the span question. If the reduced row echelon form of coefficient matrix A has the form

I
o
where O is a submatrix of all zeros, then any vector in V is expressible in terms of the members

of 8. (In fact, S is a basis for V. See Section 6.4.) In MATLAB we can use routines rowop or rref
on the coefficient matrix A.

Example 1. Let V be a vector space with dim V=3 and § = be a

RN O =
~

QO = OO e

—_ N R =

subset of V. Determine if span S = V.

Since the number of vectors in S equals the dimension of V we proceed as follows. Let A4
be the matrix whose columns are the vectors in 8. Then in MATLAB use command rref(A). We
obtain
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(= Ry B
OO
OO0

It follows that set S does span V.

Example 2. Let V be a vector space with dim V = 3 and 8 = be a

[ e S
0 B~y
=N R e

subset of V. Determine if span S = V.

Since the number of vectors in S equals the dimension of V we proceed as follows. Let A be
the matrix whose columns are the vectors in S. Then in MATLAB enter command rref(A). We
obtain

ans =
1.0000 0 -1.5000
0 1.0000 0.5000
0 0 0
0 0 0

It follows that set S does not span V.

Frequently we ask if a set § spans R™. MATLAB can answer this particular case of the second
type of spanning question directly. Let S = {X1,X32,...,Xx} be a set of vectors in R". The
set will span R™ if every vector X in R" can be written as a linear combination of the members
of S. That is, provided the linear system corresponding to

aXi+eXo+ .. +epXg=X

is consistent for all possible right hand sides X. Recall that a linear system is inconsistent if
the rref of its augmented matrix contains a row of the form

[00 ... 0fx]

where * # 0. By virtue of the row operations « is a linear combination of the entries in X. There
is no way * can be exactly zero for all possible choices of entries for X. Hence if the system is
inconsistent not every vector X in R™ can be expressed as a linear combination of the vectors in
S. Thus we need only inspect rref of A = [X; ... X] for a zero row to imply S does not span
R™. (Warning: this argument cannot be applied to check spanning sets for proper subspaces.)
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Example 3. Determine if

1 1 0 2
S = 1,711,411, 18
-1 2 2 1

spans R3.

Let A be the matrix whose columns are the vectors in S. Then in MATLAB use rref(A) to
obtain

ans=
1.0000 0 ~0.6667 1.0000
0 1.0000 0.6667 1.0000
0 0 0 0

R Since rref(A) contains a row of zeros, it follows by the argument above that S does not span
R,

Another spanning question involves finding a set that spans the set of solutions of a homoge-
neous system of equations Ax = 0. The strategy in MATLAB is to find the reduced row echelon
form of [A|0] using the command

rref(A)

(There is no need to include the augmented column since it is all zeros.) Then form the general
solution of the system and express it as a linear combination of columns. The columns form a
spanning set for the solution set of the system.

Example 4. Determine a spanning set for the set of solutions of the homogeneous system
Az = 0 where

1
A=1]2
3

—-O N
=~ b O
— DD e

In MaTLAB find rref(A) and write out the general solution as in Lab 4. We obtain

ans =
1 0 2 0
0 1 -1 0
0 0 0 1
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It follows that z; = —2z3, 22 = 3, and z4 = 0. Let z3 = r, then the general solution is

—9 -

-2
Hence every vector in the solution space of Az = 0 is a multiple of 1 and thus the
0

spanning set consists of the single vector . {Later it will be shown that this vector is in

O == N

fact a basis for the solution space.)

P M

Exercises 6.2

1. Determine if v = [2 1 0] ,va= {-1 1 3] ,wz= [0 —1 6] spans the vector
space of rows with three real entries which has dimension 3. Record your results below.

2 1 1 0
. 1 1 0 0

2. Determine if v = b=l g pos=| [ va= | spans the vector space of
2 1 1 1

columns with four real entries which has dimension 4. Record your results below.

3. Let S = {v1, v2, v3} from Exercise 2. Does 8 span a subspace of dimension 3?7
Circle one: Yes No Explain your answer in the space below.
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4. Let T = {pi(t), p2(t), p3(t), pa(t)} where pi(t) = t +2, pot) = t2 — ¢, ps(t) =
3, pa(t) =13 —#2 + 1. Is span T = vector space of polynomials of degree 3 or less?

Circle one: Yes No Explain your answer in the space below.

5. Let 8 = {p1(t), p2(¢), p3(t)} from Exercise 4. Does S span a subspace of dimension 37
Circle one: Yes No Explain your answer in the space below.

10 1 1 20
6. LetT={01,vz,vs,v4}Where‘"l=[1 2]""2=[2 _1]’”3=[1 4]’

1 1
1 -1
which has dimension 47

vg = . Does T span the vector space of all 2 x 2 matrices with real entries

Circle one: Yes No Explain your answer in the space below.

7. Let 1= [ 2+3i } and vg= [ 6—2 ] Determine whether the set § = {v1, va} spans

4+ 5 T+1
Cc2.
Circle one: YES NO
243 2—-4: 6+ 2¢
8 Letvy=| 4—-5i |,ve=| 1 -4 |, and vg= | 9— 117 |. Determine whether the set
1+ 2i 244

S = {v1, va, v3} spans C5.
Circle one: YES NO

LAB 6
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9. Find a spanning set S for the set of all solutions of Az = 0 for each of the following
matrices A. Record the set S next to A.

23 1
a) A= -1 0 -2
1 2 0

12 3
b) A=|4 5 6
7 80

1 2 4 4
c) A= 21 -3 2
-1 3 01
1 2 44090
d) A= 21 -3 21
-13 012
2
10. Let v = 1 |. Find a vector vg so that T ={ v1, v, vs} spans the vector
3
space of all columns with three real entries. Explain your strategy for finding vz and

display it below.

3
11. Let v; = | 1 |. Find two vectors u; and ug so that 8 ={v;, uj, u2} spans the vector
0
space of all columns with three real entries. Explain your strategy for finding and uz
and display them below.
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Section 6.3
Linear Independence/Dependence

The independence or dependence of a set of vectors $ = { X1, X2, ... , Xi } is a linear
combination question. A set S is linearly independent if the only time the linear combination

aXy 4+ ceeXa + -+ X

gives the zero vector is when ¢; = ¢ = - - = ¢, = 0. If we can produce the zero vector with any
one of the coefficients ¢; # 0, then S is linearly dependent. From the expression.

c1 X1+ Xo + -+ + e Xp=0

we derive a homogeneous linear system Ac = 0 as we did in Section 6.2 for linear combination
problems. Then we have the following result:

S is linearly independent if and only if Ac = 0 has only the trivial solution.

Otherwise, 8 is linear dependent. Once we have the homogeneous system Ac = 0 we can use
MATLAB routines rowop or rref to analyze whether or not the system has a nontrivial solution.

Example 1. Let Xy= (1,2,1,-1), X2= (1,0,2,-3), and X3= (1,1,0,—2). Determine if the
vectors in S ={X1, X2, X3} are linearly independent or linearly dependent.

Form the expression

3
chx,- =c1 X1+ Xo+c3Xg=0
=1

and find the corresponding linear system to solve for the ¢;. We have
c1(1,2,1,-1) + ¢2(1,0,2,-3) + ¢3(1,1,0,-2) = (0,0,0,0)
Performing the scalar multiplications and adding corresponding entries gives
(c1 +ca+c3, 2¢c1+e3, 1 +2¢2, —e1 — 32 — 2¢c3) = (0,0,0,0)
Since the two vectoré are equal, we equate corresponding entries to obtain the system of equations

c1+ c2+ e3=0
2¢; + c3=0
C]_+262 =0
—c¢1 — 3cg — 2¢3=0

The matrix form for this linear system is Ac = 0 where
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2 0 1 !
A= 1 5 0 andc= | ¢
1 -3 -2 e
Enter A into MATLAB and then use command
rref(A)
to give
ans =
1 0 0
0 1 0
0] 0 i
0 0 0

Recall that this display represents the reduced row echelon form of the coefficient matrix of
a homogeneous system. It follows that ¢; = 0, ¢ = 0, ¢3 = 0. Hence the set S is linearly
independent. (Compare this problem with Example 1 in Section 6.1.)

A special case arises if we have k vectors in a set 8 in a vector space V whose dimension is
k. Let the linear system associated with the linear combination problem be Ac = 0. It can be
shown that

S is linearly independent if and only if the reduced row echelon form of A is [ 15 ]

where O is a submatrix of all zeros. In fact we can extend this further to say S is a basis for
V. (See Section 6.4.) In MATLAB we can use rowop or rref on A to aid in the analysis of such
a situation.

The command lisub can be very efficient when dealing with problems on linear indepen-
dence/dependence. Type help lisub or see Section 12.3, for more details.

Exercises 6.3

1. Determine if the following sets are linearly independent or linearly dependent. Record
your findings in the space provided.
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a)S={vu=[4 2 1],v2=[-2 3 1],v3=[2 —-11 —4]}

b) S={vy=[3 1 2] ,v2=[-11 38 ,va=1[7 1 1]}

( 1] [ 2 1
c) S={v1 = ? , V2 = _:1,’ ,V3 = ?j
\ | -2 | -1 -5
[ 1] [0 3
d) S={v = -; , V2 = ? , V3 = (1)
\ 4 | | 1 2

e) S={p({t) =t +2t+1, pa(t) =t +2, pa(t) =3t*+4t -1}

o-fo [t ][t 21 2]

243 ]  [6-2 [ 6412 3
2. Let v1= 4+ 5i ],’02— [7+i ],andvg— [7+17i]' Is the set § = {v1, v2, va}

linearly independent?

Circle one: YES NO
2+ 3 2—43
3. Letvy=| 4—5 | andwve= | 1—% |. Is theset § = {v1, vz } linearly independent?
144 23
Circle one: YES NO
L |
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Section 6.4

Basis

Aset S = { Xy, X2, ... , X } is a basis for a vector space V provided span S = V and
S is linearly independent. Thus we use the strategies discussed previously for checking span
problems and those for linear independence problems. However, there are a number of special
cases which.arise often enough that we single them out.

e The row space of a matrix is the span of its rows. For an m x n matrix B, the nonzero
rows of rref(B) form a basis for the row space of B.

o The column space of a matrix is the span of its columns. For an m X n matrix B, the
nonzero columns of (rref(B’))’ form a basis for the column space of B.

¢ The rows (columns) of a square matrix A form a basis for the row (column} space of A
if and only if rref(A) = I.

o A basis for the solution space of Az = 0, often called the null space of matrix A, can be
found by using rref(A) or homsoln(A) to write out the general solution. (See Section
12.4 for a description of the routine homsoln.)

e Let dim V =k and S = { X1, X2, ... , Xg } be a subset of V.

i) If S is linearly independent, then S is a basis for V. (See the discussion of
Independence/Dependence.)

ii) If span S = V, then S is a basis for V. (See the discussion of Span.)

e If dim V = k, then any set with fewer than k vectors cannot be a basis for V.

e If dim V = k, then any set with more than k vectors cannot be a basis for V.

11 2
Example 1. Let A= | 2 0 1 [. Do the columns of A form a basis for the vector space of all
110

columns with three real entries, which is often denoted by R®?

Since dim R3 = 3 and A has 3 columns, we need only check that the columns of A are
linearly independent. In MATLAB command rref(A) displays
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It follows that the columns of A are linearly independent and hence are a basis for R3. In
addition we can also conclude that the rows of A are a basis for the row space.

1 21 3
215 -3
Example 2. Find a basis for the row space and a basis for the column spaceof A= | 1 2 1 3
3 09 -9
112 0

Enter the matrix into MATLAB and use the following commands. For the row space rref(A)
displays

[=N=NeReN g
COO RO
COOr W
SOOWW
oCCrOCOC

which implies that the 3 nonzero rows are a basis. Similarly, command rref(A’)’ displays

ans =
1 0 0 0 0
0 1 0 0 0
1 0 0 o 0
-1 2 0 0 0
0 0 i 0 0

which implies that the 3 nonzero columns are a basis for the column space.

LAB 6
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Lab 12 investigates the kernel and range of a linear transformation in terms of the null space
and column space of a matrix. You may want to apply two commands that are introduced
there - lisub and homsoln - to the concepts presented in the present lab. Use help for more
information on these commands.

Exercises 6.4

1. Let V = R3. Determine whether the following sets are a basis for V. It may be possible
to decide without any computations. Record your response next to each set.

1] [27 [o]

a) S = 21,111,113
-1- I._l__ Ll.

11 [1 0]

b) S = 1(,]0],|1
o 1] [1)
a7 T3

c) S= 11,11
3] [2)

(3] [3] [3 3

d)S: 1 2 1 > 1 ? 1
3] 2] |1 0
213 -1 1

2.LetA=|3 10 10
1 21 1 2

a) Find a basis for the row space of A.

b) Find a basis for the column space of A.

¢) Find a basis for the solution space of Az =0.
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3. Let S = {v1,v2} where v1 = and vg = . Determine if 8 is a basis for C?,

2 -~
1 141
the set of all column vectors with two complex entries. Explain your answer in the space
below.

Section 6.5

Symbolic Operations

The routine symrowop can be used to solve many types of problems (involving concepts
presented in this lab) which cannot be solved using routines in regular MarLAB . We present an
example to illustrate one such problem. Recall that symrowop requires the Symbolic Math
Toolbox.

Example 1. Find all values of a for which the set of vectors {v1, v2, 3} is linearly independent:

a a+1 a+2
vl=|a+2 |, v2 = a R v3=|a+1
a+1 a+2 a

Each vector vi lies in B3 so the set {v1,v2,v3} is linearly independent whenever the matrix
A, whose columns are the vectors vt, reduces to the identity matrix I. We show under what
conditions A reduces to I.

Type symrowop and enter
sym('| e, a+1, a+2; a+2, a, a+1; a+1l, a+2, al)

It is convenient to begin by producing A(1,1) = 1, so we set about multiplying Row(1) by
k = 1/a. The first step is to type 1/a in the box beside k = under the row operation k¥*Row(i).
However, as soon as you press the Tab key or click the mouse in the box beside i = the Comment
Window displays a message with two lines:

Division; denominator assumed not ZERO
Acknowledge restriction; click on CONTINUE

LAB 6
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The reason for this warning is to alert you to the fact that MATLAB performs such an operation
without regard to this restriction. Here it is important for you to note that multiplying by
1/a assumes that a # 0. To continue with symrowop click the CONTINUE button, which is
displayed in a red border to emphasize that a warning has been issued. Next you must click in
the appropriate box again before entering ¢ = 1. This displays

1 1l/ax(a+1) l/a*{a+2)
a+2 a a+1
a+1 a+ 2 a

(We have included matrix brackets here, but they do not appear in the screen displays.) A
comment on MATLAB ’s order of operations is appropriate here. Look at the value of A(1,2). It
means

Ya+)

since MATLAB uses the standard order of numeric operations, sometimes remembered by PEMDAS!
where the order of precedence is PE(MD){AS). This means that multiplication and division are
on the same level, with addition and subtraction carried out after all multiplications and divi-
sions have been performed. For operations on the same level, the order of execution is taken
from left to right.

The next step is to produce A(2,1) = O by the operation k¥Row(i) + Row(j), with
= —(a+2),i=1,and j = 2. Proceed similarly to make A(3,1) = 0. After these operations
the matrix displayed is
1 1/a*x(e+1) 1/ax(a+2)
0 —(3xa+2)/a —(3*xa+4)/a
0 -1/a —(3*xa+2)/a
At this point it is convenient, although not necessary, to switch Row(2) and Row(3). Then

multiply Row(2) by k = —a. Finally, produce A(3,2) = 0 using k = (3*a+2)/a,i=2, and
j = 3, to obtain the row echelon form

1 1l/ax(a+1) l/ax(a+2)

0 1 3xa+2
0 0 9%a+9
This completes MATLAB 's role. Now the user must interpret this form. Clearly if a = —1 then

A(3,3) = 0, otherwise A(3,3) # 0. Therefore the matrix A reduces to the identity matrix I
whenever a # —1, so the set {v1,v2,v3} is linearly independent when a # —1.

What about the assumption that symrowop forced us to acknowledge, namely, a # 07 To
check this case, as well as to check the answer to Example 1, quit symrowop. Enter a = 0,
then define the matrix

1A mnemonic for this is ‘Please Excuse My Dear Aunt Sally’, and the letters respectively denote Parentheses,
Exponentiation, Multiplication & Division, Addition & Subtraction.
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M=|a a+1 a+2; a+2 a a+1; a+1 a+2 a]

The command rref(M) displays the identity matrix, which indicates that the set of vectors
~ {v1,v2,v3} is linearly independent when a = 0. Therefore the conclusion is that {v1, v2, v3}
is linearly independent for all @ # —1.

To verify this conclusion, define a = —1, then enter matrix M again. (Use the MarLAB Command
Stack; up arrow.) The command rref(M) displays

i 0 -1

0 1 -1

0 0 0

This means that the set {v1l,v2,v3} is linearly dependent with v1 + v2 + v3 = 0.

Exercises 6.5

1. For what value of ¢ will b be a linear combination of 1 and 22, where

1 -2 -3
zl=| -2 |, ®2=| 5}, b=| 8
4 3 t

2. For what value of ¢ will b be a linear combination of 21 and 22, where

1 -2 t
zl =1 -2 |, x2 = 71, b= | -5
0 1 -3
t=
r
3. Find all values of r and s such that the vector 8 will be in Span{x1,22}, where
§—r

1 -1

xl={2 |, x2= 2

1 3
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T = 8§ =
r
4. Find all values of r and s such that the vector s will be in Span{x1,22}, where
s4r
1 -1
xzl=| 2 i, z2 = 2
1 3
r= 8§ =

5. For what values of ¢ will ¥ be in Span{ v1, v2, 3 }, if

1 4 -1 4
vl=1]01, v2 = 1], v3=1 -2}, y=| -1
2 -7 0 t

t=

6. For what values of ¢ is the set { v1, v2, v3 } linearly independent?

1 -2 -1
vi=|3| wvz2=|-4| ws8=]| 1
3 1 t
t =
aee— — S— S ——————we
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Introduction

The notion of a vector written as a linear combination of a given set of vectors is one of
the most fundamental concepts in a linear algebra course. In Lab 2 and Lab 4 we saw how
the routines rowop, symrowop, and rref made essential use of linear combinations of rows to
solve a linear system of equations. Exercise 10 in Section 3.2 investigated the form of the matrix
produce A * x as a linear combination of the columns of A. Section 6.1 was devoted entirely
to linear combinations of various kinds of vectors (rows, columns, matrices, and polynomials),
while the rest of Lab 6 applied this concept to the notions of span, linear independence, basis,
and dimension.

The aim of this lab is to extend linear combinations to the notion of coordinates. Section
7.1 provides an intuitive introduction that uses the routine lincombo to reinforce the geometric
underpinning of coordinates in R2. This section could have appeared before Lab 6 without loss
of understanding, except that here we refer to a basis. There are no exercises following the
section; all the exercises are contained within the routine lincombo.

Section 7.2 introduces formally the coordinates of a vector relative to a given basis. Section
7.3 investigates the question, ‘How are the coordinates relative to different bases related?’ Nei-
ther section requires Section 7.1.

Section 7.1

The Linear Combination Game

In this section we introduce the routine lincombo to aid in visualizing how a given vector is
a linear combination of vectors. Lincombe is a graphics game to express one vector as a linear
combination of two other vectors. You may type help lincombo for directions on using this
routine. Type lincombo to initiate the routine. A randomly selected trio of vectors is displayed.
The initial screen presents two basis vectors, u (in red) and v (in blue). It also shows a third
vector, which we shall denote by ¢, in a contrasting color. The objective is to find scalars ¢l and
¢2 such that

cl¥ u +e2x v =1

Geometrically the object is to ‘size’ a parallelogram in such a way that the given vector becomes
the diagonal of that parallelogram.
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Etor Cooff Linear Combination Game Help

E Check

20 r .
iRes‘lart
15+ 1
Quit
0t
Vectoru* m
4 5t
*
0 /‘ﬁ\
10}
&
-4 15}
To move a slider click
. . _20 i L
on its button and drag it; 0 10 0 10 20
then release the mouse button. Enter Coeff
yoorv: [ -
- .
4 4 by D.R.Hill

Figure 1.

Begin by varying the values of c1 until the length of clxu seems to form one side of the
parallelogram. This is done in either of two ways: by entering coefficients directly or by using
the slider near ‘Vector u+’. Initially it is better to use the slider. (See Figure 1.) Directions for
using them appear on the screen. Adjust the slider for the coefficient of u. The corresponding
value of ¢l is shown inside the box ‘Vector ux’ located above the slider.

Once the value of ¢l is approximated, repeat this process for c2 using the other slider. You
may have to refine your estimates for c1 and c2 several times until the vector t appears to be
the diagonal of the parallelogram. We have restricted the answers for ¢l and ¢2 to be in tenths
between —4 and 4. This enables you to concentrate on the concept of a linear combination
without unnecessary distraction. Use this restriction to determine an initial estimate for c1 and
2. Enter these values in the corresponding boxes under ‘Enter Coeff’. Press ENTER to redraw
the parallelogram.

If the vector t does not seem to be an exact diagonal of the parallelogram, continue to refine
your estimate. When it appears to be exact, press the Check button in the upper-right corner
of the screen. The routine responds with one of three messages:
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(1) Keep trying.
(2) Close; try again.
(3) Problem Solved.

If the response is (1) your estimate is not very close, (2) you should continue to enter new values
for c1 and/or c2; you are quite close, (3) you have the solution. The message ‘Close; try again.’ is
accompanied by the appearance of a new button called Solution. You may click on the Solution
button and the correct linear combination will be displayed for a short time. You should then
enter the correct coefficients to verify the result.

The scalars which express t as a linear combination of 4 and v are called the coordinates
of t relative to u and v. The column vector consisting of ¢l and ¢2 is called the coordinate
vector of t relative to uw and v.

Repeat this process of finding coordinates using lincombo by pressing the Restart button.
A new problem will be generated. To stop the routine click the Quit button.

Section 7.2

The Coordinates of a Vector Relative to a Basis

The usual coordinate system for R? involves basis vectors

o fs] e[t

Any vector v = [ Z ] = aey +beaz. We say the coordinates of vector v are its components. This

agrees with the idea that v in R? can be considered a vector or a point which has coordinates
(a,b). It is so easy and natural in this case because we are using the natural basis for R2.

We want a more general approach that permits us to use other basis vectors in place of the
natural basis. To use other bases we define the coordinates of a vector relative to a
basis S to be the scalars used to write the vector as a linear combination of the
basis vectors. We really consider an ordered basis; that is, if we switch the order of the
basis vectors we get a new basis. Hence we get a unique set of coordinates relative to an
ordered basis. This correspondence between vectors and coordinates allows us to model an
abstract vector space using R™.

Let V be & vector space with (ordered) basis § = {v1,v2,...,v5n}. For any vector w in V
there exist unique scalars k1, k2, ..., ky so that
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w = kv, + kava + -+ + knn (7.1)

The scalars ki, kg, . . ., kn are the coordinates of w relative to the S basis, denoted by [w]g
and written

k1
k2
[w]s =
kn
To determine the vector [w]g we must solve Equation (7.1) for ky, k2, ..., kn. Thus we can say:

mnding coordinates relative to a basis S is a linear combination problem.

Example 1. 8 = {v1,v2} = {[ i ] , [ -; ]} is a basis for R2. (Tell how to prove this.) Find
the coordinates of vector v = _; relative to basis S. We seek scalars k; and kg so that linear
combination

k101+k2v2=k1[i]+k2[_;]=[_;]=‘U

This leads us to solve the linear system whose augmented matrix is
1 -1 | -1
1 2] 8

In MATLAB if we enter the coefficient matrix A =[ i —-; i‘ and right-ha;lld side b = [ —; ]7

the solution of the system is given by the MATLAB command
x=A\b

which gives
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2
3

So k1 = 2 and k2 = 3. We have the coordinates of v relative to the S basis as

[‘”]s:[g}'

The notion of a coordinate of a vector relative to a basis S can be generalized to any vector
space V. (From now on when we say basis we will mean an ordered basis.) The computation
of coordinates is always a linear combination problem. The linear system derived may
have to be obtained in a different way depending on the vectors of V, but once it is obtained we
proceed as in the previous example.

Exercises 7.2

1 2 1
1. In R%, S = {vy,v2,v3} = 1(,{1{,[2 is a basis. Find the coordinate vectors
2 1 1
of each of the following:
1
Forv=|1]|,[v]g=
1
1
Forw= |0 [, [wg=
1
Foru =v 4w, [u]g =
Is it true that [v + w]g = [v]g + [w]g ? YES NO  (Circle one.)
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For y = 8v, [yls =

Is it true that [8v]g = 8{v]g ? YES NO  (Circle one.)
1 1 0 -1
1 2 1 0 . . . .
. In RY, T = {v1,v2,v3 v4} = ol'l1 N 0 is a basis. Find the coordi-
1 0 1 1

nate vectors of each of the following:

2
1

Forv = | y )y =
2
1

For w = g , [wlp =
4

For u = v + w, [ujy =

Is it true that [v + w]p = [Vl + [wlp 7 YES NO  (Circle one.)

For y = —4v, [yl =

Is it true that [—4v], = —4[v]p 7 YES NO  (Circle one.)

. Let S = {—z+1,2z+1,2%+z+1} be a basis for the vector space of polynomials of degree

2 or less.
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For polynomial p(z) = —3z% + z + 2, the coordinate vector is

[p(z)]s =

For polynomial g(z) = z, the coordinate vector is

lg(®)]s =
4. InC? S = ; l , l I:Lzz' }} is a basis. Find the coordinate vectors for each of the
following.
0 1 _
a)v_|:2+,é] ['U]S«—— b)v_l:l] [v]S“w
1412 0 0
5.In C3, S = 0 , |1 0 is a basis. Find the coordinate vector for v=
) 0 0 i
1—12
1
1
[v]ls =
. 1 2 ¢ 1 0 2 10
6. In the vector space of 2 x 2 matrices, 8 = {l: 1 o ] , [ 10 ] , { 31 ] ,{ 1 9 ]}
. . 8 —11
is a basis. For v= [ 26 13 l, find [v]s.

[v]s =
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Section 7.3
Changing Coordinates

The problem that we want to address next is the relationship between [v]g and [v]y where S
and T are two bases for the same vector space V. If we have coordinates relative to the T-basis
we want to be able to easily convert them to coordinates relative to the S-basis. This can be
accomplished by multiplying by the transition matrix from the T-basis to the S-basis.

The transition matrix P from the T-basis to the S-basis has coluinns which
are coordinates of the T-basis vectors relative to the S-basis.

Let 8 = {v1,v2, ... vp} and T = {wy,we, ... wn} be bases for the same vector space V.
The transition matrix P from the T-basis to the S-basis is given by

P = [[wig [walg ... [wnlg]

The following example illustrates how to compute the transition matrix (sometimes called the
change of basis matriz) using MATLAB .

1 1 1
Example 1. In R? let 8 = {v1,v3,v3} = 11,101, 1 and T = {wy,wo,ws} =
0 1 1
1 1 1
21,121(,]0 be bases. Find the transition matrix from the T-basis to the S-basis.
1 0 2

We proceed by finding the coordinates of the w; relative to the S-basis. This computation
requires that we solve a linear system whose coefficient matrix is composed of the vectors from
the S-basis. Using the ideas for solving linear systems in MaTL.AB which we developed previously
111
wehavefor A=|1 0 1
011
! r 14

wnlg=A\[ 1 2 1| whichgives [0 —1 2

14

]
foalg = A\[ 12 0 | which gives [ 1 —1 1i'
]

fwslg=A\[1 0 2 which gives | -1 1 1]
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0 1 -1 6
Thus the transition matrix is P = | —1 -1 1 {. For the vector w = | 10 | it can be
2 1 1 4
2
shown that [w]p = | 3 |. Then the coordinates of w with respect to the S-basis are
1
2
(wig=Px*wlp=| —4
8

This can be checked by direct calculation using the command A\w.

When working with the transition matrix P it is useful to have a technique for obtaining P
directly. The method shown in Example 1 suggests one such approach. Instead of finding the
coordinates of the individual vectors w;, we, and ws with respect to basis S, form the matrix
B corresponding to the vectors in basis T, B = [wiwaws3], and then compute the transition
matrix P from the MATLAB command P = A\B. A third method is to use MATLAB commands
M = [A B], R = rref(M), P = R(:,4:6). This method also produces the transition matrix
P in Example 1.

R
Exercises 7.3
1 1 -1
1. InV =Rlet S = {v1,v2,v3} = 1(,{2]. 1 and T = {w;,we,w3} =
-1 1 0
1 3 2
24,14, 1 be bases. Find the transition matrix from the T-basis to the
3 2 3

S-basis. Name the transition matrix P1. Record P1 here.
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2. Using the bases in Exercise 1, find the transition matrix from the S-basis to the T-basis.
Call it P2. Record P2 here. What is the relationship between P1 and P27 (Hint:
compute P1*P2.) .

3. Let V be the vector space of row vectors with three real entries and let

S={vupvst={[1 0 1],[1 1 2],[-1 1 2]}
and
T:{wl,wz,w3}={[2 1 1],[2 p 1],[2 2 2]}

be bases. Find the transition matrix from the T-basis to the S-basis. Name the transition
matrix P. Record P here.

4. In the vector space of 2 X 2 matrices,

SRR R

Find the transition matrix from the T-basis to the S-basis given in Exercise 6 in
Section 7.2.
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The Determinant Function

e I R A
Topics: the determinant function; its propertics with respect to row operations; its

behavior on nonsingular and singular matrices; a method to compute the
value of the determinant function using row operations.
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Introduction

We assume that the hand computation of determinants of 2 x 2 and 3 x 3 matrices has been
discussed using the standard scheme involving products of diagonal arrangements of matrix
entries. Figure 1 illustrates the so called 2 x 2 and 3 x 3 trick for determinants.

Figure 1.

The products of the entries are computed along the lines on the figure. The products are then
added with the sign at the end of the line attached.

Section 8.1

Experiments to Investigate the Determinant Function

The determinant is a function from the square matrices of any size to the complex numbers.
The function is denoted by det. Its value when acting on a square matrix A is denoted by det
A when we write it and by the command det(A) in MATLAB . Some books also use the notation
| A | for the value of the determinant. We will use MATLAB to explore the properties of the
determinant function by a series of experiments.

LAB 8



LAB 8 3

Exercises 8.1

1. Construct a 2 x 2 matrix with a row of zeros and compute its determinant. Repeat for a
3% 3 and a 4 x 4 matrix with a row of zeros. Construct 2 x 2, 3 x 3, and 4 X 4 matrices
each with a column of zeros and compute their determinants.

Conjecture:

The determinant of a matrix with a row or column of zeros is

2. Construct a 2 x 2 matrix with two equal rows and compute its determinant. Repeat the
computation for a 3 x 3 and a 4 x 4 matrix. Construct 2 x 2, 3 X 3, and a 4 X 4 matrices
with two equal columns and compute their determinants.

Conjecture:

The determinant of a matrix with two equal rows or columnns is

3. The MATLAB command A = fix(10*rand(3)) generates a 3 x 3 real matrix A. Compute
det(A) and det(A’). Change the 3 in the MATLAB command to several other integer
values like 2, 4, 5, 6 and repeat the computations.

Conjecture:

The determinant of a real matrix and the determinant of its transpose are ___

4. Construct a 2 x 2 diagonal matrix with diagonal entries 5 and 3 and record the value of
its determinant.

Construct a 2 x 2 diagonal matrix with diagonal entries -2 and 9 and record the value of
its determinant.

Construct a 3 x 3 diagonal matrix with diagonal entries 2, 7, and -1 and record the value
of its determinant.
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Construct a 3 x 3 diagonal matrix with diagonal entries 4, 0, and 3 and record the valuc
of its determinant.

Conjecture:

The determinant of a diagonal matrix is

In MArLAB we can construct a 3 x 3 upper triangular matrix using the command A =
triu(fix(10*rand(3))). Generatc scveral upper triangular matrices of size 3 and compute
their determinants. Repeat the procedure for several other sizes.

Conjecture:

The determinant of an upper triangular matrix is

[ SW]

5. Let A= . Compute and record det(A) = _.

BN QTN
o o
c o w

We will perform a series of row operations on A and compute the determinant of each
new matrix. Always perform the row operation on the original matrix A.

Notation:

® Ap . g, means interchange row i with row j in matrix A.
® Agp,+r; means replace row j of A by k times row ¢ plus row j.

e Ajr, means multiply row ¢ of matrix A by scalar k.

Let B= AR, oRr,;det(B) =~
How is det(B) related to det(A)? .

Let C = AR, R,; det(C) =
How is det(C) related to det(A)?

Let D = A2R1+R2; det(D) =
How is det(D) related to det(A)?

Let E= A apyymy; det(E) =
How is det(E) related to det(A)?
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Let F = Agp,; det(F) =
How is det(F') related to det;(A)'7

Let G = A_sp,; det(G) =
How is det(G) related to det(A)?

Let H = Ay/ap,; det(H) = .
How is det(H) related to det(A)?

If you have difficulty filling in the following responses repeat the previous experiment with

2 -5 3
A=| 0 2 -1
3 2 1

Conjectures:

If we interchange rows the determinant .
If we replace one row by a linear combination of itself with another row the determinant

If we multiply a row by scalar k the determinant

6. Fill in the blanks.

a) Let A= srref(A) = det(A)= .

SO
oo Ov N
© o W

det(rref(A)) =

b) Let B= l ; i l; rref(B) = . det(B)=___
det(rref(B)) =
1

1
1 -1 |;rref(C)=_ — det{(C)=
2 0

det(rref(C)) = .

c) Let C=

(SR
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210
d) Lete D={1 2 1 |;rref(D) = det(D) = ___
01 2
det(rref(D)) =

e) True or False: For any square matrix Q, det(Q) = det(rref(Q)). .. ..

f) Based upon the few experiments in parts a) — d), does there seem to be a connection
between the following:

rref is I det is zero
rref is not 1 det is not zero

Draw an arrow between those that appear to be related.

Conjectures: Let Q be a square matrix.

If rref(Q) = I, then det(Q) is
If rref(Q) # 1, then det(Q) is
The determinant of a nonsingular matrix is
The determinant of a singular matrix is

7. A general way to compute a determinant is to use row operations to reduce it to upper
triangular form, keeping track of how the row operations change its value, and then use
the fact that the determinant of an upper triangular matrix is the product of the diagonal

2 31
entries. (See Exercise 4.) To illustrate, let A =| 1 -2 2 |. The objective is to
3 0 4

compute det(A) using properties of the determinant.

1 -2 2
Let B= AR Rr, = | 2 3 1,
3 0 4
det(B) =| |det(A) = det(A) =| |det(B)
1 -2 2
Let C = B _or+r,=1| 0 7T -3 |;
3 0 4
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det(C) = det(B) = det(A) = det(C)
1 -2 2
Let D=C_3g,4+R, = 0 7 =3 |;
0 6 -2
det(D) = det(C) = det(A) = det(D)
1 -2 2
Let E = D1/7R2 = 0 1 —3/7 5
0o 6 -2
det(E) = det(D) == det(A) = det(E)
1 -2 2 ]
Let F=E gy = | 0 1 =3/7 |;
0 0 47|
det(F) = det(E) = det(A) = det(F)

Now compute det(A) from det(F).
Check your work by computing det(A) directly.

8. Follow the procedure in Exercise 7 to compute det{A) where A = . Show

-
W N =
=]

your work below,

LAB 8




LAB 8

<< NOTES; COMMENTS; IDEAS >>

LAB 8



LAB 9

Inner Product Spaces

Topics: vectors in MATLAB ; standard inner product or dot product in R™; command
dot; norm or length of a vector; command norm; angle between vectors;
orthogonal vectors; unit vectors; routine uball.
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Introduction

This lab introduces measurements: length, distance, and angle. Section 9.1 introduces the
dot product (inner product) of vectors. The definition of an inner product space is examined in
the exercises. Section 9.2 uses the dot product to determine the length (or norm) of a vector
and to define the distance between a pair of vectors. Section 9.3 uses dot products and the norm
to determine the angle between vectors. The exercises consider the Cauchy-Schwarz inequality
in an experimental fashion and the norm on an ahstract vector space. Other exercises provide

. . . . . . ] 3 . .
a geometric visualization of a family of norms on R* and R” using routine uball.

Section 9.1
The Standard Inner Product

In MATLAB an n-vector can be considered either a column or a row with n entries. We denote
the vector space of n-vectors by R™. We sometimes use the term vector for an element of R™.
The context will tell us whether we are to consider a vector as a row or column. R" is an
n-dimensional vector space and various inner products can be defined on it. Here our primary
concern is with a particular inner product, called the standard inner product or dot product, on
R™. For a pair of vectors u and v in R" the standard inner product of  and v is computed as

n
> ujv; = wor +ugva 4 o+ unty
i=1

To denote the inner product of « and v we use
(u,v) or u-v
In MATLAB , once vectors w and v have been entered we use the command
dot(u,v)
to compute their dot product. If u and v are not the same size an error message is displayed.
If 4 and v are both real column vectors (of the same size) in MATLAB then we can compute the

standard inner product directly as the matrix product u'*v or equivalently as v«xu. The inner
product of complex vectors is treated in Exercise 3.

3 0
Example 1. Let u= | 0 and v = ? be vectors in R*. Enter thesc vectors as columns
2 —4

into MatLaB . Then we have that
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dot(u,v)

displays

-10

Verify in MATLAB that the matrix products u’sv and v/'#u give the same result.

A vector space with an inner product defined on it is called an inner product space.

There is a wide variety of inner product spaces that play an important role in applications.
Inner products provide a convenient tool used to define other types of measures on elements of
vector spaces. See Sections 9.2 and 9.3.

Exercises 9.1

1. Compute the dot product of each of the following pairs of vectors. Record the result in
the space provided.

a) v = 3, w=| -1 b) v = , W= -
9 0 0 4
L “ |V | -2 | =
[ 0] [ —1] [ 3] [ 4]
-1 5 1 -3

c)v= 3 W= 6 | d) v = 3 W= 9 -
4] | -3 ] | —1 ] | 2 ]

2. Let V be the vector space of 2 x 3 matrices. In Examples 3 and 4 of Section 6.1 we showed
how to use the MATLAB command reshape to associate a column (in this case with six
entries) with an element of V. When MATLAB command dot detects input which is not
rows or columns of the same size it uses the reshape command to automatically make
the column association. The command for the dot product of two matrices A and B in
V is:

dot(A,B)
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30

The description above applies to any size matrix. The only restriction is that dot requires
the matrices to be the same size. Compute the dot product of the following pairs of marri-
ces. Record the result in the space provided. (Note: The association of a column with an
m X n matrix is an example of a function between vector spaces known as an isomorphism.)

0 3 -1 6
A= B = .
(Use the reshape command on matrices A and B to determine the associated columns
and compute the dot product of the columns directly. Compare your results with Ex-

ercise lc).
4 2
’B_l—3zm

(Use the reshape command on matrices A and B to dctermine the associated columns
and compute the dot product of the columns directly. Compare your results with Ex-
ercise 1d).

3 3

[ 2 -1 4 0 2 -4
e)A=|0 27[,B=|6 5 -4
4 51 1 -1 -3
[ 1 2 3 4 122 1
d) 4= ﬂ;401LB“l4.33—J —

In Exerciscs 2.1 we discussed that the prime (') operator in MATLAB returns the conjugate
transpose of a complex matrix. Let C™ be the vector space of columns with n complex
entrics. Then the standard inner product of vectors z and y in C” is defined as

(z, y) = (conjugate transpose of &) *y

In MATLAB we compute this directly as x’ * y or using command dot(x,y). Compute the
inner product of each of the following pairs of complex vectors. Record your result in
the space provided. (Note: somectimes the complex inner product is defined as (z,y) =
(conjugate transpose of y) *x, or y’ * 2.)

W= o244

Sl i PY T 34 |
1+ 2+ 3i

b) ¢ = 2 |, y= 4
3— 4 1— 2
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1414 -2+3
c) xz= % |,y= 2-2%
0 1-2

4. An inner product is a function F' from a vector space V to the real numbers or the complex
numbers, depending upon the scalars permitted in the vector space, that satisfies the
following properties:

(i) For any vector v in V, F(v,v) > 0 and equality holds if and only if v is the zero
vector in V.

(ii) For any »,w in V, F(v,w) = F(w,v). (Here the bar means take the conjugate.)
(iii) For any v,w, and w in V, F(v + w,u) = F(v,u) + F(w, u).
(iv) For any v, w in V and any scalar k, F(kv, w) = kF (v, w).

Use MATLAB to show that each of the following functions is not an inner product. State a
property listed above that is violated.

a) Let V be the vector space R3. Forv = ['01‘02‘03]T and w = [wlwz‘wa]T, define
Fo,w)=|v |- Jw |+ |v2|-|w2|+|vs| |ws]

In MATLAB function F can be computed by the command abs(v) *abs(w).

b) Let V be the vector space C? Forv = [ :; ] and w = [ z; ], define

F(v,w) = vyw + vawe

In MATLAB function F can be computed by the command v.’«w. (Note that operation
! is not the same as ’, the conjugate transpose operator.)

¢) Let V be the vector space R%. Define

F(v,w) = vTCw

LAB 9



6 LAB 9

where C' = ; f . (Hint: Find a nonzero vector » so that Cv =(—1)v. To do this

solve the homogeneous system (C + I)v = 0. Then compute F(v,v).)

d) Let V be the vector space R2. Define
F(v,w) = vTCw

where C = ; ; ] (Hint: Find a nonzero vector v in the null space of C and

compute F(v,v).)

Section 9.2
Length and Distance

Once an inner product (u,v) or u - v has been defined on a vector space V we call V an
inner product space. In an inner product space we use the inner product function to define other
concepts. The length or norm of a vector v is denoted ||v| and is defined by

lvll= v (v, v} = Vo~ v

The notion of a norm is well defined since (v, v) > 0 for any inner product, with equality holding
if and only if v is the zero vector.

v

vz |
For the standard inner product of R® withv = | . | we have

Un

loll= /Tim o = yfod + 03+ + v
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In MATLAB we can compute the norm based on the standard inner product on R™ (or C™; see
Exercise 3 in Section 9.1) using the norm command as in

norm(v)
or directly as
sqrt{(v/*v)
3 0
Example 1. Let u = ﬁ(l) and v = i be vectors in R*. Enter these vectors as columns
2 —4

into MATLAB . Consider R* with the standard inner product and compute the length of each
vector. Commands

ul = norm(u), vl = norm(v)

display

3.7417
vl =

4.5826

The distance between two vectors w and » in an inner product space V is defined as the
norm of their difference, ||u — v||. In terms of the inner product, [|[u — vll= /(u — v,u — v).

U1 U1
U2 v2

For the standard inner product on R*, withu={| . | and v = ,
Un, Un

lu—v|= \/ZT?=1(“J' —vj)2 = /(u1 —v1)% + (u2 — v2)% + -+ + (un — vn)*

In MATLAB we compute ||u — v|| using command norm(u — v).

LAB 9
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3 0
Example 2. Let u = _é and v = ? be vectors in R*. Enter these vectors as columns
2 —4

into Mati.ag . Consider R* with the standard inner product and compute the distance between
u and v. The command

d = norm(u — v)

displays

7.4162

Example 3. Let V be the vector space of 2 X 2 matrices. For A and B in V, define their inner
product as follows in MATLAB

(A, B) = dot(A,B)

as in Exercise 2 in Section 9.1. With this function V is an inner product space, hence we can
compute the length of a 2 x 2 matrix and the distance between 2 x 2 matrices. Here the length
of matrix A, denoted by ||A||, is computed in MATLAB as

norm(reshape(A,4,1)) or  sqrt(dot(A,A))
and the distance between matrices A and B, ||A — BJ||, is computed in MATLAB as
norm(reshape(A,4,1) - reshape(B,4,1)) or sqrt (dot(A-B,A-B))

1 2 3
21 0

|A — Blj= v/33. (MaTLAB displays a decimal expression in place of the square roots above. Use
command ans”"2 to verify each result.)

For A = [ ] and B = [ ‘i] verify in MATLAB that ||A||= v/10, |B||= v29, and

WARNING: The command norm(A) has a different meaning than || A|| used in this example.
Execute command norm(A) and you will see that it produces a value of 3 and not /3. Type
help norm. You will see that the command refers to the largest singular value of matrix A,
a concept beyond the scope of this book. The behavior of the norm command on vectors is
discussed in Example 2.
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Exercises 9.2

1. Let V = R® with the standard inner product. For vectors

2 1 0
1 2 2
v=|2|,u=|3|,andw= |0
1 4 1
2 5 3

compute the following in MATLAB and display the results in the space provided.

a) length of v b) length of u
c) length of w d) distance from v to u
e) distance from v to w f) distance from u to w

2. a) Compute dot(v,v) and norm(v) for the vector v in Exercise 1. How are they related?

b) Repeat part a) for the vectors u and w from Exercise 1. Based on this limited numeric
evidence, form a conjecture relating dot(x,x) and norm(x) for any vector .

3. Let V be the vector space of 4 x 2 matrices with real entries with the inner product as
given in Example 3. (Note: use reshape(A,8,1) here.) For matrices

1 2 1 0 2 1
1 2 01 3 4
A= 9 1 , B = 10 ,and C = 1 2
21 01 3 4

compute the following in MATLAB and display the results in the space provided.

a) f|Al, b) || B]|
c) IC|l d) [|A — B
e) |[A-C| f) 1B -Cl

LABO
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4. A unit vector is a vector of length one. For a nonzero vector v in an inner product space
V, a unit vector in the same direction (see Section 9.3) as v is given by

v/ v

a) Find a unit vector corresponding to vector v in Exercise 1. Record your result below.

b) Find a unit vector corresponding to vector w in Exercise 1. Record your result below.

¢) Find a unit vector corresponding to vector A in Exercise 3. Record your result below.

5. Let V = (3, the vector space of columns with 3 complex entries, with the standard inner
product as defined in Exercise 3 in Section 9.1. For vectors

2+ i 1414
v=|3-4 |, u=| 44+2¢ |,andw = 0
2 1-: -2

compute the following in MATLAB .

a) lengthofo b) length of w
c) length of w d) distance from v to u
e) distance from v to w f) distance from w to w

6. Let V be the inner product space R™ with the standard inner product. For pairs of vec-
tors v and w in R™ compute the following quantities and record their values in the table
below. Compute ||v|| # ||w| and |(v, w)|. In MATLAB use commands norm(v)xnorm(w)

LAB 9
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and abs(dot(v,w)).

1 2
2 -1 2 -6
a)v=|3 |, w=|1] b)v= , W= 'vz[ }, =l ]
! 4 N R o © 31°YT | -9
-3 2
1 [ 5
1 3 2 -1 1 0
d)v—[2], =[4]e)'v= -1, w= 2| Hlv=|0},w=1]3
0 1 1 0
1 | o
norm(v) * norm(w) = [jv || * || w | | abs(dot(v,w)) = | (v, w) |
a)
b)
c)
d)
e)
)

Based upon the experimental evidence in the preceding table state a conjecture about
which value is greater, ||v|| * |lw]| or |(v,w)|. Record your conjecture in the space below.
Check your conjecture with other pairs of vectors in R™.

Conjecture:
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7. We have used an inner product to define the length or norm of vectors. However, a norm
(function) can be defined directly on a vector space V as a function N from V to the real
numbers that satisfies

(i) N(v) > 0, for any nonzero vector in V.

(ii) N(zero vector) = 0.

(iii) N(kv) = |k|N(v), for any scalar k and any vector v.

(iv) N(v 4+ u) < N(v } + N(u), for any vectors v and u.
The norm defined using the standard inner product on R™ is called the 2-norm and for
emphasis we write |||z for the 2—norm of vector v. Two other norms on R™ that are

simple and useful are the 1-norm and the max norm, sometimes called the oc-nerm. The
1-norm is denoted ||v||; and is defined as

n
ol =3 Juj|=lvr [+ ]ve |+ + | vn].
=1

The co-norm is denoted |}v}joo and is defined as
||v"00= ma‘xﬂ Vs |?-7 = 172)“""’} = max{' ”n |’| v2 1’“ | vn |}
In MATLAB the 2-norm is computed as before by command norm(v) or by norm(v,2).

The 1-norm is computed by command norm(v,1) and the co-norm by norm(v,inf). Use
MATLAB to compute the following and record the results in the space provided.

1
a)v=|1 ol ——  vllz ——— 7l

b) v = olli ——— vlle ——— vl

c)v= ol ———  fvllz ———— [Pl

LAB 9
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1
dov=[0] [Joh — lollz ——— vl
0

8. Since a norm defines how the length of a vector is measured, a norm determines a geom-
etry for the vectors. One way to view the geometry imposed by different norms is to
investigate the shape of the set of all vectors with norm equal to 1. Such sets are called
unit balls. If we include the interior of these balls we say we are looking at the unit disk
in a particular norm. In R™ the norm based on the standard inner product is computed
as the square root of the sum of the squares of the components of the vector, hence we
expect the unit ball or unit disk to be related to a circle in R? and a sphere in R3.

The 2-norm is a particular case of a family of vector norms called p-norms. For a vector
« in R™ the p-norm of x is denoted by || # ||, and computed by the expression

n 1/1’
I = (Z w)
i=1

Each choice of p > 1 gives a different norm on R".

If we restrict our attention to R2 and R® then we can have MATLAB display the shape of
unit balls for various p-norms. The routine uball can be used to see the shape of unit
balls. Type uball and then follow the screen directions for the following cases.

a) Choose the norm value as 2 and 500 trials. Describe the unit ball in the 2-norm in RZ.

In R3.

b) Choose the norm value as 1 and 500 trials. Describe the unit ball in the 1-norm in R?,

In R3.

LAB 9
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¢) Do a series of experiments with vectors in R? using uball. Provide a verbal description
of the unit ball for each value of p. (Choose the number of trials > 300.)

p Description of Unit Ball.

10

20

d) In R? if p— oo, what geometric shape is the unit ball approaching?

e) Run uball in R? using the norm inf. Describe the unit ball.

f) Compare your descriptions in parts d) and e).

g) Do a series of experiments with vectors in R® using uball. Provide a verbal description
of the unit ball for each value of p. {Choose the number of trials > 500.)

P Description of Unit Ball.

10

20

LAB ¢
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h) In R3 if p— oo, what geometric shape is the unit ball approaching?

i) Run uball in R® using the norm inf. Describe the unit ball.

j) Compare your descriptions in parts h) and i).

9. Run uball in R? using 1/2 for the ‘norm choice’ and observe the unit ball.! Repeat
this process for 1/3,1/4,1/5,...,1/N. If N — oo, what geometric shape is the unit ball

approaching?

10. Run uball in R3 using 1/2 for the ‘norm choice’ and observe the unit ball.? Repeat
this process for 1/3,1/4,1/5,...,1/N. If N — oo, what geometric shape is the unit ball
approaching?

11. In MarLaB, let x = rand(3,1), t = sqrt(2), and

1/t 1/t 0
P = 0 ¢ 1
1/t -1/t O
a) Compute y = Pz. y=
b) Compute || z || and || ¥ ||
(EES ol =

1For values of p between 0 and 1, the expression given in Exercise 8 is not a norm. However, the geometry of
the sets generated is interesting to study.
2ibid
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c) Are || =z || and }j ¥ || related? If so, how?

d) Experiment with other z using rand(3,1) to confirm or reject your answer to part c.

e) Summarize the relationship between the length of z and the length of Px.

Section 9.3
Angles

Here we discuss a particular property of a real inner product space V, that is, a vector space
V with real scalars and an inner product function that associates pairs of vectors from V with
real numbers. R™ with the standard inner product is a real inner product space, but C™ with
the standard inner product (see Exercise 3 in Section 9.1) is not. In any real inner product space
V the Cauchy-Schwarz inequality holds. Hence for any pair of vectors v and w in V

(v, w)2 < (v, v){(w,w)

Assuming that the inner product is used to define a norm as ||v||= v/(v, v) the Cauchy-Schwarz
inequality 1mphes that

(v, w)2< v |1*]] w |12

or equivalently

[(z, w)l<| v It w ff

If neither v nor w is the zero vector, then we have

[(ww) |
Tollwl =*
hence
(vw)
LS Tomwy =1
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Thus we can use the quantity "%’“1"1—”15)" to define the cosine of the angle between vectors v and

w. In a real inner product space V the cosine of the angle € between vectors v and w is defined
by

(v, w)

O = o Tw]

In MATLAB for R® with the standard inner product, cos 8 is computed by the command
dot(v,w)/(norm(v)*norm(w))

We compute the angle # in radians by taking the arccosine of the previous expression. The
arccosine command in MATLAB is acos.

3 0
Example 1. Let © = _(1) and v = ? be vectors in R*. Enter these vectors as columns
2 —4

into MarLAB . Then the cosine of the angle between them is given by command
¢ = dot(u,v) / (norm(u)+*norm(v})
which gives
c =
-0.5832
and the angle in radians is obtained by command
angle = acos(c)
The display generated is
angle =
2.1935

This output is in radians. To obtain an output in degrees type command adeg = (acos(c)*180)/pi.
The display generated here is

adeg =

126.7

LAB 9
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The vectors v and w in a real inner product space are said to be orthogonal provided that
the angle between them is 7/2 radians. Computationally, v and w are orthogonal if and only if
(v, w) = 0. Note that the vectors in Example 1 are not orthogonal.

Orthogonal vectors are important in a variety of situations and applications. The following
example illustrates how to use a system of equations to determine vectors orthogonal to a given
set of vectors.

1 2
Example 2. Let V = R? with the standard inner product. Let S={v1,v2} = 21,11
1 0
Find a vector orthogonal to each vector in S.
cl
Let ¢ = | ¢z | and require ¢ to be chosen so that (v1,¢) = 0 and (v2,c¢) = 0. This leads
c3

to the homogeneous linear system

12 1] 2 _[o
210 2t o |
c3

1 21

21 0 J From MATLAB , command rref(A) gives

Hence c is in the null space of matrix A = [

/3
] which implies that the general solution to Ae =01is | —2r/3 |. Hence one
r

10 -1/3
01 2/3

1
vector orthogonal to each vector in Sise = | —2 | (set r = 3). Note that ¢ is also orthogonal
3

to span S because ¢ is orthogonal to both v1 and v2. Note also that the set {vy, v, ¢} forms a
basis for R3.

LAB 9



LAB 9 | 19

Exercises 9.3

1. Find the angle (in radians) between each of the following pairs of vectors in R™ using the
standard inner product. Record your result in the space provided.

1] 1 [ 1 1
a)'v=-2-,w=[3l. - b)v=h1],w={_ll. -

1
Av=|1|,w=} -2 d)v= 21 w= .
? v _— 0 ) 4 R ——
3

3

e)v= ,w = . fvo= Mw= C—
2| 2
0

2. Let V = R? with inner product (v, u) = vT Au where A ={ i) ; ] (It can be shown

that this definition satisfies all the axioms of an inner product.) Compute the angle
between the following pairs of vectors in this inner product space and record your results
in the space provided. (In MATLAB the inner product defined here can be computed as

dot(v,A*u).)

a)v= 1 y U= 1].

b) v = ! , U= 1].

c)v:p1 u=-3
o 2|
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3. Let V= R* with the standard inner product and let

3 1 2
1 -1 0
vy = 9 ) vz = O ’ vy = 0
0 1 1

a) Let T = {v1,v2,vs}. Find a vector w orthogonal to each vector in T. Describe your
procedure and record the vectors you find.

b) Let S = {v1,v2}. Find two linearly independent vectors w and u that are orthogonal
to each vector in S. Describe your procedure and record the vectors you find.
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Orthogonal Sets

Topics: orthogonal sets; orthonormal sets; coordinates of a vector relative to an
orthonormal basis; projections; construction of an orthonormal basis using
the Gram-Schmidt process; command gschmidt.
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Introduction

Let V be an inner product space with the inner product of a pair of vectors # and v in V
denoted by (u,v). From Section 9.3 we have that u and v are orthogonal provided (u, v) = 0.
Here we consider sets of orthogonal vectors and investigate bases which are orthogonal sets.

Let S = {vy,v2,...,v%} be a set of vectors in V.
o S is called an orthogonal set provided (vi,v;) = 0 for 7 # j. (We say that the vectors
in 8 are mutually orthogonal.)

e If S is an orthogonal set of nonzero vectors, then S is linearly independent.

e If S is an orthogonal set of nonzero vectors, then

T—{ vy v2 Vg }
lodll' foz ™77 I vk

is an orthogonal set in which each vector has length one, where || v; ||= /(vj,v;). The

operation of dividing a nonzero vector by its length is referred to as normalizing the
vector. :

o A set of vectors which is orthogonal and in which each vector has length one is called an
orthonormal set. (The set T above is an orthonormal set.)

Section 10.1 discusses matrices whose columns form an orthonormal basis. Such matrices
are called orthogonal and play important roles in a variety of topics.

Section 10.2 develops the projection of one vector onto another and the projection of a vector
onto a subspace. We use both a geometric and algebraic approach and show the important role
of orthogonal bases. Projections provide an important way to obtain approximations.

Section 10.3 develops an algorithm, the Gram-Schmidt process, for producing an orthonormal
basis from an existing basis for a subspace. In effect this shows that the projection techniques
from Section 10.2 can always be applied.

Section 10.1
Orthonormal Bases

Let S = {u;,u2,...,un} be an orthonormal basis for an inner product space V. Then for
any vector v in V it is easy to compute the coordinates of # relative to S using the inner product.
Suppose that we want to find ¢;,7 = 1,2, ...,n such that
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v =cru; + Uy + -+ Cplly

Then using the property that the vectors in S form an orthonormal set of vectors, upon taking
the inner product of each side of the previous expression with u, we have that

ek = (v, uk), for k=1,2,..,n.

Now let T be an n X n matrix whose jth column is denoted by w;. It is instructive to view
T as

T=[w1 wg - wn]

The definition of matrix multiplication enables the entries of the matrix T'+T to be written in
terms of the inner products (w;, w;).

w’l (’!D1, wl) (wl, w2) cee (wla wn)

w! W, W wo,wa) - (wa,w
Ter=| 2 [wl wy - wn]: ( 2 1) 2 2) ‘ (w2, wn)

wy, (wn,w1) (Wn,w2) -+ (Wn,wn)

Two results follow immediately from this form.

e The columns of T form an orthogonal set if and only if 7'4T is a diagonal matrix.

e The columns of T' form an orthonormal set if and only if T'+T" = I,,.
The preceding statement is equivalent to the following:

The columns of T form an orthonormal set if and only if T-! = T”.

Square matrices with orthonormal columns are important in a number of areas and arise later
in this chapter. We emphasize this with the following terminology.

A square matrix P with real entries is called orthogonal provided P’ = P

1 1 -1
Example 1. Let S= {vi,v2,v3} = 19, ~-11, 1 . Enter these vectors into
0 2 1

MATLAB as vl, v2, v3 respectively. To verify that S is an orthogonal set you can use the
definition and check that in MarLAB dot(v1, v2), dot(v2, v3), and dot(v1, v3) are all equal
to zero, or in MATLAB form the matrix

C = [vl v2 v3]
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and perform the multiplication C* % C to check that the product is equal to the diagonal matrix

oo N
oY C
w oo

Since C’ # C is not equal to the identity matrix, the set S is not orthonormal. To normalize
set S, enter MATLAB commands

tl = (1/norm(vl))*vl
t2 = (1/norm(v2))*v2
t3 = (1/norm(v3))*v3

The set T = {t1, t2, t3} is orthonormal. To verify this, construct the matrix A as
A = [t1 t2 t3]

in MarLAB and then compute A’ * A. You will see the 3 x 3 identity matrix displayed.

Let v = {156 — 7 7). The coordinates of v relative to basis S are [v]s = [4 6 — 5/, which
can be obtained from rref(JC v|) (See Section 7.2 for details on coordinates of a vector relative
to a basis.) or from C\v. It is possible to obtain [v]r in a similar manner. However, since T is
an orthogonal basis, [v]r can be computed directly using [v]r = [(v,t1) (v, t2) (v,%3)]".

Exercises 10.1

1. Let V = R® with the standard inner product and let

1/v3 -2/v/6 0
S = {‘uh"z,us} = 1/‘/§ » ]-/\/g y _1/\/§
1/V3 1/V6 1/v2

In MATLAB 13 can be entered by typing t = 1/sqrt(3); ul = [t; t; t] and similarly for
u2 and ud.

a) Using MATLAB show that S is an orthonormal basis for V. Write a brief statement
indicating your approach. '
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1
b) Forv =| 2 |, find [v]s
| 3
[ -1
c) Forv=| 0|, find [vjg
4

Let V = R? with the standard inner product and let

s tm={[1 [ 1]}

a) Using MATLAB show that S is an orthogonal set. (State how to do this on the line
below.)

be a basis for V.

b) Convert the S-basis to an orthonormal basis. Call the new basis T and display its
vectors below.

c) Let w = [ 2 ] . Find the coordinate vector of w relative to the T-basis.

-3

[wlp =

d) What is the coordinate vector of w relative to the S-basis?

[w]s =

e) How are the coordinate vectors in ¢) and d) related?

3. In MATLAB use command x = rand and then form the matrix
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| cos(z) —sin(z)

a [ sin(z)  cos(z) ]

a) Compute A’ » A.
b) The set of columns of A forms an set.

c) Matrix A is an matrix.

4. Is the set of columns of the matrix generated by the MATLAB command H = hilb(5) an
orthogonal set? Explain.

1/v3 ~1/v/2
5 Let vy = | 1/v/3 | and vy = 0 |. Find a vector vs so that the set § =
1/v/3 1/v2

{v1,v2,vg} is orthonormal.

1 -1
6. Let A= | 1 1
0 1

S ay

a) Determine values p, g, and r so that A’ A is a diagonal matrix. How many such values
are there?

b) If r = 1, then find an orthogonal matrix whose columns are scalar multiples of A.

7. Let P be an n X n orthogonal matrix and 2 and ¥ be vectors in R™.

a) Show that || Pz ||=]| = ||.

b) Show that the angle between Px and Py is the same as the angle between x and y.
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Section 10.2
Projections

Here we investigate the concept of the (orthogonal) projection of one vector onto another
from both a geometrical and a computational standpoint. We use an intuitive development
based on trigonometric tools in R? and extend the procedures to R? and beyond. We conclude
our discussion with the projection of a vector onto a plane to set the stage for projections onto
subspaces in the next section. Both the computational power and the graphics capability of
MAaTLAB will be used to provide a foundation for the important notion of a projection.

In R%:
A geometric point of view.

The projection of a vector w onto a vector w is obtained by dropping a perpendicular from
the tip of u onto w. See Figure 1. (If needed we extend w. See Figure 2.) Note that the

\
B

proj, u

Figure 1 Figure 2

projection in these pictures is in the same direction ! a3 w and by using trigonometry the length
of the projection is cosé || u ||. We adopt the following notation. The projection of vector u
onto vector w is a vector denoted by

projy u

An algebraic point of view.

We know the length of the projection is cos@ || u || and that the projection is a vector in the
same direction as w. Thus algebraically we can express the projection as its length times a unit
vector which has the same direction. Hence we have the expression

’ w
Projqyy u =cosf || u || Tl

1 Assume that the angle between u and w is greater than 7/2 radians. Draw the figure and the projection in
this case. Explain why in general we say that the projection of vector u onto vector w is a vector parallel to w.
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Next we use the formula for the cosine of the angle between two vectors (see the Cauchy-Schwarz
inequality)

(u, w)
[ 2 fHll 2o |l

to obtain another formula for the projection. Substituting for cos# we have

cosf =

. w (u,w) w
Projyy uw=cosf || u = ul| ——
v el lwl Nl e Il wl
Simplifying we have
P (u, w)
YOjyy U = ——— 5 W 10.1

Example 1. Let u = l g ] and w = [ _111 ] Find proj,y u.

Using Equation (10.1) for the pfojection we compute the inner product of vectors u and w
and the length of w. In MATLAB , command

dot(u,w)
displays
ang =
10
and command
norm(w)
displays
ans =
4.1231

It follows that ||w(|?= 17. (In MATLAB use command ans”*2.) Hence from Equation 10.1,
IOjyy U = —l-gw = E 4
PO == | -1 |

To see the projection of u onto w use MATLAB command

project(u,w)
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The graphics display in two dimensions in routine project shows a line drawing similar to Figure
1 with projey u labeled by P. Note that the line segment perpendicular to w can be written
in terms of » and the projection P as —P + u. {For more information on routine project use
help.)

A vector space point of view.

In R? span{w} is a subspace which geometrically is a line through the origin. The projection
of u onto w is a vector in span{w}. Since we measure distances as perpendicular distance we
see that the vector projq u is ‘closest’ to u since vector s (See Figure 3.) is orthogonal to
span{w}. Hence the projection of u onto w represents the member of the subspace span{w}
that is closest to vector u. It also follows from standard vector considerations that we can obtain

Projuw

Figure 3
a formula for vector 8. Vector s is a vector orthogonal to every vector in span{w}. We have
u = Projypyu + 8
thus

8 = U — Projy (10.2)

Example 2. Using the vectors u and w in Example 1, find a vector that is orthogonal to
span{w}. Using Equation(10.2) we have that a vector s orthogonal to span{w} is

oo 3] 0] 4] _fupr
STUTPIOw = o | "7 1 | T | 44/17

To check, compute the inner product of s with any vector in span{w}. Here span{w} is any
multiple of vector w, so let kw represent any vector in span{w}.
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(s, kw) =%(4k) + %(—k} -0

If you used routine project in Example 1 (and have not exited MATLAB or done other graph-
ics) type command figure(gcf) to redisplay the line drawing of the projection process. Note
that s, the line segment perpendicular to w in Figure 3, can be used so that span{w, s} =
span{u,w} = R’ Hence set {w, s} is an orthogonal basis for R? while set {u,w} is a ba-
sis, but not an orthogonal set. Press ENTER to return to the command screen, then type the
following command.

gtext(’s’)

Move the cross-hair using the arrow keys to label the vector 8 which is orthogonal to w. Press
ENTER to return to the command screen. (Use help for more information on gtext.)

Summary: Projections give us a way to compute a vector in span{w} that is closest to u
and a way to find a vector that is orthogonal to every member of span{w}.

| These ideas can be extended to R™ and to any real inner product space! |

U1 w1
In R3, the projection of vector w = | ug | onto vectorw = | wy | is obtained by employing
us w3

the identical formula as in Equation (10.1). We use MATLAB and its graphics to illustrate the
process.

4 7
Example 3. Let u = | § | and w = 7 |. To determine proj,, © use MATLAB command
6 | =3

p = (dot(u,w)/norm(w)"2)+w

To see the components of projection p in rational form type rational(p). To display a line
drawing of the process use command

project(u,w)

Use the command gtext(’s’) as described in Example 2 to label vector s on the displayed figure.

To extend the ideas on projections to subspaces of R? we proceed as follows. Let u be a
vector in R? which we want to project onto a plane. A plane is a subspace of dimension 2 in
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Figure 4

R® and is completely defined if we specify a basis. Let w; and wa be linearly independent
orthogonal vectors in R3 so that W= span{w;, w2} and u is not in W. The situation
is illustrated in Figure 4. The projection of u onto subspace W is obtained by dropping a
perpendicular from the tip of u, denoted by R, until we intersect the plane W at point Q. In
Figure 5 we have indicated the projection by connecting point P with Q. The vector from Q to
R is labeled s and is orthogonal to the plane W. Since W is a subspace, s is orthogonal to
W if and only if it is orthogonal to every vector in the plane W. But W = span{w;, w2},
hence s is orthogonal to every linear combination of vectors w1 and wz. Figure 5 provides us

woN —

Figure 6 Figure 7

with a picture of the projection projyy u, but to work with the projection we need an algebraic
expression for projyy u. Since a basis gives us the minimal amount of information about a
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subspace it follows that we should consider projecting u onto the basis vectors for W. This
is shown in Figure 6. From the previous work in R?, and the fact that things generalize in a
natural fashion, we have

(u, we)
[| we |2

(u, w1)

Projy,; u = mwl and Projoyp, @ = wo

Since we have an orthogonal basis it can be shown that projyw u can be written as the sum of
the projections of u onto the basis vectors for W. See Figure 7. We have

Projyw U = Projqy,; u + projy, u (10.3)
or equivalently
s (u, w1) (u, wa2)
Projyw u = w1 + s W2
W e P T T P

Warning: This result is true only when w; and wy are orthogonal.

1 —2.5 -2
Example 4. Let W = span{w;, w2} = span 21, 1 and u = 2 |. The
1 .5 3

set {w;,wa} is an orthogonal set. Find projyw u and a vector orthogonal to subspace W,
Proceeding as indicated above we have

. _ (us wl) _
PrOJwL ¥ = oy P T 6™
(u, w2) " 17

roj = 2l e = —w
Pt © 7 T P2 7 132

and it follows that from Equation (10.3) that

roj u*i)w +Hw = 2_3

From Figure 5 we see that vector s is orthogonal to W and that

-2 -2 0
8 =u-—projyw u = 2|1 -128 =1 -08
3 14 | 16

In Example 4 the projection of 4 was onto the plane W = span{w, w2}. For illustrative
purposes we can think of plane W as the xy-plane. For in fact we can rotate the coordinate
system so that W is rotated into the xy-plane. A graphical display of the projection of a vector
u onto the xy-plane is available in MATLAB . Enter vector u into MATLAB , then type
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projxy(u)

Follow the screen directions. Try this with vector w in Example 4.

|The key to projections is to use an orthogonal basiﬂ

In fact things are even simpler if we use an orthonormal basis, for then the denominators in
Equation (10.3) are 1.

Note: For an orthonormal set of columns wy, w2, ..., w, with W = span{wy,wa,...,wk},
the expression in 10.3 can be computed as follows using matrix M = [w1,wz2,. .., wk]

projyu = M(MTu) =M = (wluw)w; + (wiuwyws + - + (wiw)we. (104)

Exercises 10.2

3
1. Letw_[4].

a) Find the projection p of u = l ; ] onto w. p=

b) Use command project(u,w) to determine the quadrant in which p is located.

Record the quadrant here.
¢) Find a scalar k for which the vector kp has a norm that is equal to one.

k=
d) Find a vector s that is orthogonal to span{w}. 8=
. C 0
a) Find the projection p of u = [ _5 l onto w. p=
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4.

5‘

.Letw:m.

b) Use command project(u,w) to determine the quadrant in which p is located.

Record the quadrant here.
¢) Find a scalar k for which the vector kp has a norm that is equal to one.

k=
d) Find a vector g that is orthogonal to span{w}. s =

4

4 ]
onto w. p=

a) Find the projection p of u = [ _3

b) Briefly explain your answer to part a). Hint: Use command project({u,w).

1 2 1
Letwl=| 2 |,w2=|-1]|,andu=| 4
0 3 1

a) Find the projection p of u onto span{wl, w2}. p=

b) Find a vector s that is orthogonal to span{w1,w2}. 8=

5 1 1
Let wl = 2 |, w2=| -1 |,andu=]1
-3 1 0

a) Find the projection p of 4 onto W = span{wl, w2}. p=

b) What is the relationship between projyyu and projey, u?
Explain why it occurs.

V2/2 —/2/2
Let wl = 0 |,w2= 0 and W = span{wl, w2}.
V2/2 V2/2

a) Show that {wl, w2} is an orthonormal set.

4
b) Use 10.4 to determine projyyu where u = | 2
1
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V3/3 —V2/2
7. Let wl= | v/3/3 |, w2= 0 and W = span{wl, w2}.
v3/3 v2/2
a) Show that {wl, w2} is an orthonormal set.
4
b) Use 10.4 to determine projyy v where u = | 2
1

Section 10.3
The Gram — Schmidt Process

The ideas about projections in Section 10.2 actually tell us a way to construct an orthonormal
basis from an existing basis provided we build the new basis one vector at a time.

The Gram-Schmidt process takes a basis S ={u1, ug, ..., ur} for a subspace of an inner prod-
uct space V and produces a new basis T = {w1, w2, ..., wy, } whose vectors form an orthonormal
set. The process is often performed in two stages:

o First from the S-basis generate a basis {v1,v2,...,¥n} of vectors that are mutually
orthogonal. That is, (vi,v;) = 0,1 # J.

o Second normalize each of the orthogonal basis vectors into a unit vector.

The first stage involves solving a set of equations and the second is easily performed using
w; = v;/ || vi ||. At each step in the first stage we use projections onto subspaces.

l The First Stage |

Define v1 = 1.

Look for a vector vg in the span{vy,uz} that is orthogonal to v;. This will then
guarantee that

span{ui,us} =span{vy,uz} sincevi =wu;
= span{v;, vz} since v is a linear
combination of vyand ug

Let vo = k1v1+ koua. Find k) and k2 so that _(1;1,02) = 0.
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0 = (v1,v2) =ki(v1,v1) + ko(v1, u2)
We have one equation in two unknowns, so let k3 = 1 and solve for k;. We get
g . —(v1,u2)
(v1,v1)
thus we have

_(‘!)1, uz) _

Vo =u V1 = Uz — Projy, U
2 (v1yv1) Protu,

m Look for a vector vz in span{w;, v2,ug} that is orthogonal to both v; and v,. This

will guarantee that span{u;, uz, us} = span{vi, vo, ug} = span{vy, va,vs}. Let vg3 =
ki1v1+ kova+ ksua. Find kg, ko, and ks so that (v1,v3) = 0 and (vg,v3) = 0.

0 = (v1,v3) = k1(v1,v1) + k2(v1,v2) + k3(v1, ua)
0 = (v2,v3) = k1(v2,v1) + ka2(v2,v2) + ks(v2, ug)

Since by construction {v1,v2) = 0 the preceding equations simplify to

k1(v1,v1) + k3(v1,ug) =0
kavz,v2) + ka(v2,us) =0

Thus we have 2 equations in 3 unknowns. Let k3 = 1, then we find that

ke — —(v1,u3)

k — _(02’ U3)
- p = U2 Us)
(v1,v1)

and =
(‘02 P )
and hence

_ (v,us) - (v2,us)
(v1,v1) * (va,v2)

Other steps: | v = ug — projspan{vl, V2yerr s U1} Uk

Vg = usg Va2 = ug — prOJspan {vla ,02} us

tl‘he Second Stage |

The orthonormal basis for V' is given by

_ v V2 v
{“"1”"2’“-""71}—{11—’“1»1:’ Mozl =+ Ton }
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Example 1. Let V= span{ui, ug, us} where

2 1 1
1 0 2
Ul = 0 U2 = 1 , U3 = 1
4 3 0

Use the Gram-Schmidt process to find an orthonormal basis for V.
2

Step 1. Definc v = u1 = (1)
4
1 ) ~1
. (vi,u2) 0 14 1 —§
Step 2. Compute vz = Uz — Projy, U2 = U2 — m—)— =l {|-2lo|= 1-5
3 4 i
Step 3. Compute vz = ug — projspan{'ul,vz} ug = ug — ((::11’:;‘1‘; — ((:Z”::% =
1 2 -t i
2| alv|_2m|F|_| B
1 21 | o 15/9 11 I
1 —22
0 4 3 )

The set {v1,v2, v3} is an orthogonal basis for V. An orthonormal basis is obtained by dividing
each vector by it length.
v v v
1 wy = 2 3

CRVGT ST W3 = 000/1225

For V = R™ and the standard inner product both stages of the Gram-Schmidt process are
available in MATLAB routine gschmidt. Type help gschmidt for more details. The following
examples illustrate the use of routine gschmidt.

1 2 0
Example 2. Let § = { uy, uz,uz} = 0|, 1],}2 be a basis for R®. To find an
2 0 1

orthonormal basis from S using MATLAB enter the vectors u, ug, ug as columns of a matrix A
and type

B = gschmidt(A)
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The display generated is

0.4472 0.7807 -0.4364
0 0.4880 0.8729
0.8944 -0.3904 0.2182

The columns of B are an orthonormal basis for B3,

Example 3. We will show how to find an orthonormal basis for R* containing scalar multiples of
the vectors

and vg =

—_ O e
N e

-1

First enter w1 and wg into MATLAB as vectors vl and v2, respectively. To find a basis
containing scalar multiples of v1 and vg, use commands

A = [vl v2 eye(4)]
rref(A)

The display indicates that the first four columns of A form a basis for R%. The command
S = A(:,1:4) produces the matrix with those columns. Type the command

T = gschmidt(S)
The display is

T =
0.5774 -0.3780 0.7237 0
0 0.3780 0.1974 0.9045
0.5774 0.7559 -0.0658 -0.3015
~-0.5774 0.3780 0.6580 -0.3015

Column 1 of T is (ﬂ%ﬂ) vy and column 2 of T is (W) va, hence the columns of T form the

desired orthonormal basis for R%.

Eicplain what to do if rref(A) did not indicate that the first four columns of A form a basis for
R
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Exercises 10.3

1. Let V = R? with the standard inner product and let

1 1 1
S = {'U,]_, U2, ’U,3}= 2 ) 0 3 0
0 0 1
Use routine gschmidt in MATLAB to obtain an orthonormal basis T and then find the
1
coordinates of x = | 2 | relative to T. Record the orthonormal basis and the coordinates
3

of = below.

2. Let V = R with the standard inner product and let

-1 2 0 1
2 1 1 1
S = {ul’u’23u3’ u4}= 0 » 1 » 0 3 0
1 0 1 1
Use routine gschmidt in MATLAB to obtain an orthonormal basis T and then find the
4
coordinates of € = (2} relative to T. Record the orthonormal basis and the coordinates
1

of & below.

3. Let V = R* with the standard inner product and let
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b i 5 5
5 5 -.5 ~.5
S = {UI,U2,u3,’u4} = 510 =517 =5 | 5
5 —.5 5 —.5

a) Is S an orthonormal basis? Circle one: Yes No
Explain your answer.

b) In MarLaB form the matrix T whose columns are the vectors in S. Generate a random
vector in R? using command x = rand(4,1) and then compute || z || and || Tz ||.
How are the values of the norms related? Repeat the experiment for another arbitrary
vector,

1 1
.Letvy =] 2 | andwvg = | 3 |. In MATLAB form the matrix A = [v1 v2] and then use
2 1

command gschmidt(A). Explain the meaning of the display generated.

e [100]

0 1
a) In MaTLAR use command A’. Record the result. Al =
b) In MarLaB use command C = A’xA. Record the result. C=

¢) What is the relation between C and C'?
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d) Experiment with other complex matrices A to confirm or reject your answer in
part c).

Circle one: confirmed not confirmed.

6. A complex matrix A is called Hermitian if it is equal to its conjugate transposc. The
command A’ gives the conjugate transpose in MATLAB .

a) How can you use MATLAB to determine if the matrix A below is Hermitian?

2 3—3i
A—[3+3i 5 ]

b) Compute r = &' * A * 2 for the complex vector below.
=|1_; =

Is 7 a real number? (Circle one:) YES NO

c) Experiment with other complex vectors  to determine whether =’ Az will always be
a real number. (Circle one:)

Always a real number for this matrix A. Not always a real number.

d) Experiment with another Hermitian matrix A and arbitrary vector x to see ifr =
' * A x x is always a real number.

(Circle onc:) Always a real number. Not always a real number.

7. Let V = R* with the standard inner product and let

3 1 0
1 -1 -2
V1= 191> 2= 1 | vz = 1
0 1 -1

a) Find an orthonormal basis for R* containing scalar multiples of the vectors v; and va.
Record your result below.
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b) Find an orthonormal basis for R* containing scalar multiples of the vectors vy, v,
v3. Record your result below.

<< NOTES; COMMENTS; IDEAS >>
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Plane Linear
Transformations

- I M
Topics: plane linear transformations (reflections, rotations, compressions, expan-
sions, shears), geometric displays; routines planelt and matrixmaps.
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Introduction

Linear transformations play a central role in linear algebra. This lab presents routines that
provide a geometric visualization of the underlying concepts for linear transformations in the
plane. No prior knowledge of linear transformations is assumed. Indeed, the geometric approach
motivates many of the concepts that are fundamental to all linear transformations.

In Section 11.1 the routine planelt makes explicit use of the matrix representation of a
linear transformation. Here the user selects a linear transformation from a menu of planc lin-
ear transformations and applies it to well-known figures from high school geometry. The linear
transtormations include rotations, reflections, expansions/compressions, and shears. The figures
include a square, rectangle, parallelogram, triangle, and pentagon. Users can define their own
figures and plane linear iransformations.

A series of experiments anticipates properties of a linear transformation T. It is emphasized
that sometimes the geometric nature of T addresses the property more directly, whereas at other
times the algcbraic nature, that is, computations involving the matrix representation, provides
a better route. This approach transcends linear algebra. It goes to the heart of mathcematics:
specific examples versus theorems, proofs versus counterexamples.

Planelt provides a visualization of other basic concepts as well. By defining a linear trans-
formation in terms of a singular (non-invertible) matrix, it is possible to examine the dimension
of a space, the rank of a matrix, and the kernel of a lincar transformation.

In Section 11.2 we use another routine, matrixmaps, to explore further connections among
the topics of linear transformations, matrix rcpresentations, determinants, and composite func-
tions based on linear transformations. In this section we introduce the notion of homogeneous
coordinates so that translations of plane figurcs can be performed by matrix multiplication.
Experiments are included to provide a physical meaning to the value of the determinant of a
matrix representing a linear transformation.

Section 11.1

Graphics Experiments

This section develops the idea that a matrix representation (a concept in algebra) accom-
panies each linear transformation (a concept in geometry). The interplay between an algebraic
approach and a geometric approach is particularly bencficial when learning mathematics. The
geometry provides a visualization of the algebra.

We investigate properties of certain plane linear transformations. The main tool is routine

planelt, which views a geometric figure in three separate frames: present, prior and original.
In MATLAB type command planelt. Read the Introduction and the General Directions. Next

LAB 11



LAB 11 3

comes a menu of Figure Choices containing a list of geometric figures. Selections are made by
typing the appropriate number and then pressing ENTER. To begin, choose a triangle (option
4). This produces another menu. For now choose option number 2, ‘Use this figure. Go to select
transformations.” This in turn brings up a menu of Plane Linear Transformations. There are
four special types:

rotations

reflections
expansions/compressions
shears

All of these transformations should be familiar except, perhaps, shears.

Four options on the menu of Plane Linear Transformations that we will use frequently are
different from those in which you select a plane linear transformation. Option 10 allows you to
enter your own 2 x 2 matrix. This option defines a plane linear transformation in terms of that
matrix. We will make use of it frequently. The other three choices are option 11, which restores
the original figure, option 0, which starts with a new figure, and option —1, which is used to
corrcet mistakes made in the previous selection.

Matrix Representations

We begin by reflecting the triangle about the z-axis (select option 2.) Let T’ denote this
transformation. The Current Figure shows the result of the reflection on the Previous Figure.
Here the Previous Figure is the same as the Original Figure. The matrix in the lower left
quadrant of the screen displays the matrix representation Mt of linear transformation T

Here
1 0
Mr = [ 0 -1 }

The linear transformation T ‘moves around’ the points that are vertices of the triangle. This
triangle has vertices as depicted in Figure 1.

The image of the vertex v = l (2) l is

e 4 )18-12]

. . . . 14,
T also moves points on the triangle’s edges. For instance the image of w = [ 1 } is

1
Notice that T(v) = Mo for every such point ». It turns out that T(v) = My for every
column vector v. This formula captures what it means for M7 to be the matrix representation
of T. You may find it uscful to regard M as a kind of code for T, carrying information in much

MT-w:[
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B(0,2)

A(=2,0) C(2,0)

Figure 1

the same way that DNA carries the genetic code.

Composition of Transformations

Next we use the composition of functions. Recall that if f(z) and g(z) are functions then
g o f is the function defined by (g o f)(z) = g(f(z)). We will denote transformations by upper
case letters like S and T, and vectors by lower case letters like v, so the definition becomes

{SoT)(v) = S(T(v)).
The order of the terms in the composition is vital here: T comes first and S second.
We have defined T to be reflection about the z-axis. The screen should contain the result of
T being applied to a triangle. Now we apply another plane linear transformation to the Current

Figure. So press ENTER. Then rotate the figure 60° counterclockwise (option 1 with angle 60).
Let S be the linear transformation ‘rotation by 60°. The matrix represcntation for S is

0.5 —.866
Ms = l 866 o.5l

Sketch the Current Figure, which we will label (I):

The composition SoT of two plane linear transformations is itself a plane linear transfor-
mation. We seek a way to write the matrix representation of SoT in terms of the matrix
representations of S and T. Example 1 examines a particular case.
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Example 1. Let T be reflection about the z-axis and S be rotation by 60°. We will determine
what matrix corresponds to § o T, where the notation means that a figure is reflected first and
rotated second. Let A be the product of the matrix rcpresentations M and M g,
: 0.5 —0.866 1 0 0.5 0.866
A_MS'MT_[O.SSG 0.5]{0 —1}_{0.866 «—0.5}'

Now restore the triangle and for the transformation select option 10. (‘Use your 2 x 2
matrix’.) Follow the directions there for entering the matrix A. Record the Current Figure,
which we label II:

Notice that Figures I and II are identical in size and orientation. This means that the two
transformations, one defined by the composition SoT and the other by the matrix A, have the
same effect on the triangle.

Now test if the two transformations have the same effect on another figure. To enter a new
figure select option 0. Then select the pentagon (option 5). Once again reflect this figure about
the z-axis and then rotate it by 60°. Record the Current Figure in III.

(I11)

Next restore the original figure (option 11) and perform the transformation whose matrix repre-
sentation is A. Record the Current Figure in IV. The two current figures are identical in size and
orientation, thus attesting to the fact that, for the pentagon, the transformation whose matrix
representation is A and is equal to the composition of the two transformations, § o T. It turns
out that this equality holds for every figure in the plane, and hence it holds for every point in
the plane.
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(IV)

We thus draw the conclusion that the matrix representation of So T is gqual to the
matrix representation of S times the matrix representation of T in that order.

The result in Example 1 holds not only for the plane linear transformations defined there
but for any pair of linear transformations. This fact is so important that we will highlight it.

If S and T are linear transformations with matrix representations Mg and
M, respectively, then the matrix representation of the linear transforma-
tion SoT is Mg- M.

Properties of Composition

We now examine some properties of linear transformations using either an algebraic approach
or a geometric approach, whichever suits our purpose at the time. We compare each property
of transformations under composition with the same property of matrices under multiplication.
Let's begin with the commutative law.

In general multiplication of matrices is not commutative. Is the composition of linear trans-
formations commutative? One way to answer this question is to proceed by experimentation.
Once again, let T be reflection about the z-axis and S be rotation by 60°. Restore the original
figure (the pentagon) and perform T o 5, which rotates first and reflects second. Record the
current Figure in V.

V)
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Since figures IV and V are not identical it follows that S o T # T o §. Therefore, in general,
transformations do not commute under composition. This is analogous to the behavior of matrix
multiplication. :

Next we exploit the relationship between matrices under multiplication and transformations
under composition to investigate inverses. The transformation that corresponds to the identity
matrix is the identity mapping I, which maps each vector to itself. Recall that a square matrix
is invertible if it has an inverse. Similarly, a transformation T is invertible if there is a transfor-
mation S with the property that 7o S = I and S oT = I. The transformation § is called the
inverse of T and is usually denoted by 771.

To visualize this situation, start with a new figure, the parallelogram (option 3). Let T be
rotation by 45° and S be rotation by 315°. Perform T then perform §. Notice that the current
figure is identical to the Original Figure. Next restore the parallelogram and perform § first and
then 7. Once again the Current Figure is identical to the Original Figure. This suggests that
ToS=80T=1s08=T"1 What is MrMg? How are My and Mg related?

Now start with a new figure, the 2x1 rectangle (option 2.) Expand it in the z-direction by
k = 2. Next choose a transformation so that the resulting Current Figure is identical to the
Original Figure. Record the transformation you chose. Now start with the triangle and expand
it in the z-direction by £ = 2. Apply the transformation you chose previously. The result is
identical to the Original Figure. Using the previous results, state a conjecture for the inverse of
expansion in the z-direction by k > 1.

What do you think is the inverse of compression in the z-direction by k£ < 17

Exercises 11.1

1. Experiment with several figures to see if SoT =T o S for the following choices of S and
T. Record your conclusions.

a) T = reflect about y-axis
S = expand/compress in z-direction with & = 2/3

b) T = shear in y-direction with & = 2
S = reflect about liney ==z
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2. Respond to each of the following in the space provided.

a) What is the matrix representation Mt of reflection T about the line y = —z?
b) What is the matrix representation Mg of shear S in the z-direction with k = 27
¢) Write a formula for the matrix representation of T 0 § in terms of My and Mg.

d) What is the matrix representation of 70 §7

3. Let M1 be the matrix representation of reflection T about ¥y = =, Mg be the matrix
representation of expansion S in the y-direction with £ = 3, and Mg be the matrix
representation of rotation R by 225°.

a) Write a formula for the matrix representation of 7o S o R in terms of M7, Mg, and
Mpg.

b) What is the matrix representation of T o S o R?

4. Let T and S be the transformations whose matrix representations are My = [ :1,, Z ]

LAB 11
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5'

7

and Mg = l 3 (2) l . Is it true that SoT =T 0 7 Why? (Respond below.)
Let T be reflection about ¥ = 2 and S be reflection about y = —z. Experiment with

several figures to determine the nature of the transformation 7 o 5. Record your result
by describing the image of a point (x,y).

Respond to each of the following in the space provided.

a) What is the matrix representation Mt of compression T in the y-direction with factor
0.27

b) What is the matrix representation of T~!?

Respond to each of the following in the space provided.

a) What is the matrix representation Mt of shear T in the y-direction with &k = 2/37

b) What is the matrix representation of T—1?

¢) Describe in words the transformation T

LAB 11
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8. How is the matrix representation of T~! related to the matrix representation of T? (See
Excreises 6 and 7.)

Section 11.2

More Graphics Experiments

Introduction

The mathematics underlying computer graphics is closely connected to matrix multiplication
as we saw in Section 11.1. We perform rotations, reflections, or scaling operations using a square
matrix A of size 2x 2. The operations are characterized as a function f which works on a ‘picture’.
viewed as a set of data, to produce an ‘““mage’.

f(picture’) =’image’
When the data representing the ‘picture’is properly arranged the operation of function f is
executed by a matrix A:
f(picture’) = A x'picture’ ='image’.

Unfortunately a general transformation not only includes rotations, reflections, and scalings, but
also translations or shifts (which “carry” the picture without distortion beyond where it used to
be to a new place), which cannot be expressed using a transformation matrix of corresponding
size 2 x 2. To use matrix multiplication seamlessly for translations we introduce homogeneous
coordinates!, which are an extended representation of the data representing the ‘picture’.

Recall that common plane transformations are associated with 2 X 2 matrices as shown below.

1
o Identity transformation: [ 0 ]

01
: . [1 o]
> Reflection about the z-axis: 0 -1
. [ -1 0]
> Reflection about the y-axis: 01

'Homogeneous coordinates also play a fundamental role in the study of projective geometry.
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> Reflection about the line y = z: [ (1) (1) ]

. - ol | cos(8) —sin(8)
&> Rotation counterclockwise through a positive angle 6: [ sin(6)  cos(6) |’

(In MATLAB angle # must be in radians.)

> Scaling by h in the z-direction and by k in the y-direction: [ g 2 ]

.
1

> Shear in the z-direction by the factor k: [ (1]

0]
1|

> Shear in the y-direction by the factor k: [ :7

The translation of a point, vector, or object defined by a set of points in the plane, is performed
by adding the same quantity Az to each z-coordinate and the same quantity Ay to each y-
coordinate. (We emphasize that Az and Ay are not required to be equal in magnitude.) We
illustrate this in Figure 2 for a point in R?, where the coordinates of the translated point are:

(z*,y*) = (z + Az, y + Ay).

Yy
(z*,9™)
Ay
Az
(z,9)
T
Figure 2

In order to have scalings, projections, and rotations “play together nicely” with translations we
change the space in which we work. In order to employ matrix multiplication to perform trans-
lations and avoid the direct additions of changes to individual coordinates, we adjoin another
component to vectors and border matrices (See Figure 2.) with another row and column. This
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change is said to use homogeneous coordinates. To use homogeneous coordinates we make
the following identifications.

T
A vector [ : ] in R? in identified with the vector | y | in R3.
1

The first two coordinates are the same and the third coordinate is 1.

Each of the matrices A associated with plane linear transformations is now identified with a
3 x 3 matrix of the form

A [ 0 ] a1 ajp 0
0 =|axn axp 0
[0 0] [ 0 0 1
For example when using homogeneous coordinates for a reflection about the y-axis the corre-

-1 00
sponding matrix is the 3 x 3 matrix 0 1 0 {. Also when using homogeneous coordinates
0 01

cos(f) —sin(6) O
for a rotation by an angle 8 the corresponding matrix is the 3 x 3 matrix | sin(6) cos(8) 0

0 0 1
A translation can be performed by matrix multiplication on data expressed in homogeneous
1 0 Az ]
coordinates using the 3 x 3 matrix | 0 1 Ay
00 1
We have )
1 0 Az z | z+ Az
0 1 Ay yi{=| y+Ay
00 1 1 ] 1

Experiments Employing Homogeneous Coordinates

Section 11.1 described plane linear transformations geometrically and related them alge-
braically to their matrix transformations. This section introduces a broader range of transfor-
mations with a view toward providing geometric motivation for the determinant of a matrix as
introduced in Lab 8. Moreover, the present section uses a series of experiments to provide a
physical meaning to the size of the determinant of a matrix used in a plane linear transformation
and a physical setting to educe a formula for the determinant of the product of two matrices.

The main tool is the routine matrixmaps. Typing this command produces a screen with
several components. The menu on the right-hand side lists seven objects: triangle, house, rec-
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tangle, arrow, square, semi-circle, and polygon. Begin by selecting the square. To view the
object, click the View button. A menu appears for obtaining help on using five transformations:
reflection, scaling, rotation, translation, and shears. Select translation. A pop-up window pro-
vides directions for entering a matrix for this transformation. Thus the matrix for translation
by @ = 3 units in the z-direction and b = 2 units in the y-direction is

1 03
A=101 2
0 01

Exit the window by clicking “OK”. Next click the MATRIX button. This produces another
menu of help options, but since we have already ascertained the proper form for a translation
matrix A type 0 to QUIT the help and press ENTER to continue. Then enter the matrix A in
the form [1 0 3;0 1 2;0 0 1] and press ENTER. Now, click on the MAP IT button to display the
image of the object. Notice that the image of the original square (in red) is another square (in

blue).

Now that we know how to use matrixmaps we use this routine to provide geometric moti-
vation for the concept of the determinant of a matrix. Click Restart, select the square again, and
then click on the View. To show an alternate way to proceed, click on the MATRIX button at
once. We intend to scale the square so type 2 for directions for entering the appropriate matrix.
Type 0 to QUIT the help and press ENTER to continue. We will use

200
A=103 0
0 01

for scaling by 2 units in the z-direction and 3 units in the y-direction, so enter this matrix using
the form of a scaling matrix, and then press ENTER. Click the MAP IT button and notice
that the image of the square is a rectangle. For help in determining the areas of the respective
figures, click the Grid On button from the menu in the bottom right-hand part of the screen.
Notice that the area of the image is six times the area of the object. (Explain why this is true.)

Let us investigate what happens when a different object is scaled in the same way. Click
Restart and select the rectangle. By clicking on View and on Grid On you can see that the
area of the 4 x 3 object is 12. Click on the MATRIX button, type 0 to QUIT the help, press
ENTER to continue, enter the same scaling matrix (use the up-arrow key several times to recall
the previous scaling matrix, if desired), and press ENTER again. Click the MAP IT button and
notice that the image is an 8 x 9 rectangle. Thus once again the area of the image (72) is 6
times the area of the object (12).

What is the significance of the number 67 Notice that det(A)=6. This suggests that the
determinant of A provides a magnification factor for this scaling. Use matrixmaps to verify
this result on a different figure, the House. By turning on the grid you can see that the area of
the object is 5. (Explain why.) Consequently the area of its image after scaling by 2 units in
the z-direction and 3 units in the y-direction should be 30. This conclusion can be checked by
observing that the image consists of six 2 x 2 squares and two 2 x 3 right triangles. We display
the general property that these experiments suggest

Area(image) = |det(A)| x Area(object)

LAB 11
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(Since we can scale by negative values, it is possible that det(A) < 0, hence because of physical
considerations we have included absolute values around det(A).)

It is also possible to verify this property for an object that is not a polygon. Restart ma-
trixmaps, select the semi-circle, and turn the Grid On to see that its radius is 1; hence its area
is 7/2. Look closely at its image after the same scaling. It is a half of an ellipse with semi-minor
axis of length a = 2 and semi-major axis of length b = 3. Recall that the area of a half of an
ellipse with semi-minor axis of length a and semi-major axis of length b is mab/2. Hence the
area of the image is 67 /2, verifying the stated property once again.

Next we provide a geometric justification for the algebraic fact that
det(AB) = det(A)det(B)

by examining the relationship between the area of the object (semi-circle) and the area of a
composite image. We have just viewed the image, a half of an ellipse with area 67/2. Now
click the Composite button to form the composition of transformations. This time we choose a
scaling 4 units in the z-direction and 2 units in the y-direction, so click the MATRIX button
and enter the matrix B in the format [4 0 0;0 2 0;0 0 1]. Notice that det(B) = 8. Clicking the
MAP IT button reveals the image (in blue) and the composite (in magenta). The composite
image is half of an ellipse with semi-major axis of length 8 (because it runs from 8 on the left
to 24 on the right) and semi-minor axis of length 6 (because it is 12-6). Therefore the area of
the composite image is 487/2, which is 48 times the area of the object (7/2). Since 48 = 6 x 8,
this result confirms geometrically that det(AB) = det(A)det(B).

To confirm this result for the same transformations on a different figure, restart with the
House and then apply scaling by 2 units in the z-direction and 3 units in the y-direction. We
have seen that the area of the object is 5 and the area of the image is 30. Now compose this
transformation with scaling by 4 units in the z-direction and 2 units in the y-direction. The blue
image lies inside the larger magenta composite image, which is formed from a 16 x 12 rectangle
and two 8 x 6 right triangles, so the area of the composite image is 240, which is 48 times the area
of the object. This provides a second geometric confirmation that det(AB) = det({A)det(B).
Exit matrixmaps by pressing the Quit button.

Exercises 11.2

1. Use matrixmaps to perform each of the following.

a) Select the House object. Determine a matrix A (in homogeneous coordinate form) so
that the image is a house only half as wide.
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b) Select the House object. Determine a matrix A (in homogeneous coordinate form) so
that the image is a house only half as wide and half as tall.

¢) Select the House object. Use A = , determine the image and explain why

(=R
[~
oo

the house is uninhabitable.

d) Select the House object. What matrix A will ‘shrink’ the house to a single point?
Verify your choice.

2. Use matrixmaps to perform each of the following.

a) Select the Arrow object. Determine a matrix A so that the image is an arrow pointed
in the opposite direction.

A=

b) Select the Arrow object. Determine a matrix A so that the image is an arrow pointed
in the same direction but only half as long.

cos(n/4) —sin(r/4 0
c) Select the Arrow object and use the matrix A = | sin(n/4) cos(r/4) 0
0 0 1

Describe the resulting image. What angle does it make with the positive horizontal
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axis? To help answer this question, use the Grid On button and then inspect the grid
generated on the mapped arrow. (Note: 7/4 is entered as pi/4 in MATLAB .)

d) Using part ¢ determine the coordinates of the top end of the arrow.

3. Use matrixmaps to perform each of the following using matrices

D

310
A=|0 2 0| and B =
0 01

S o=
[=RR el ]
= QO

a) Choose the rectangle object. Use matrix A to map the rectangle then form the com-
posite map by applying matrix B to this image. Carefully make a sketch of the final
image or print the screen display.

b) Restart and again choose the rectangle object. Use matrix B to map the rectangle
then form the composite map by applying matrix A to this image. Carefully make a
sketch of the final image or print the screen display.

c) Are the composite images in parts a) and b) the same? Explain why or why not using
an algebraic argument. '

4. Use matrixmaps to perform each of the following.

a) Select the square object. Determine a matrix A (in homogeneous coordinates form)
so that the upper right corner of the object appears at the point (2, 3).
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b) Select the square object. Determine a matrix A (in homogeneous coordinates form)
so that the upper left corner of the object appears at the point (2,3).

c) Select the square object. Determine a matrix A (in homogeneous coordinates form)
o that the image of the square is the following image.

2pe-—-pmm—p-—==mpem==q——-qQ--="
' 1 i .‘ 1 1 1
1 1 1 1 1 1
1 ! 1 1 1 1
lp-ecpem—pmec—f—mmt ==~ ==
1 ) 1
] 1 }
' 1 '
0 + +
' 1 '
0 0 1
A= 1 1 I
Y [T T ST |
I 1 )
1 1 1
) 1 ' '
) TR TN I — N
1 1 1 1 0
1 1 1 1 1 1
1 1 1 1 1 1
S YU S T RPN [P QI
-3 -2 -1 0 1 2 3

d) Select the square object. Determine a matrix A (in homogeneous coordinates form)
so that the image of the square is the following image.
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Linear Transformations

RS AR .
Topics: image; matrix transformation; matrix representation; coordinates of a vector
relative to a basis; range, column space; pre-image; kernel, null space.
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Introduction

We have seen many of MarLAB ’s numerical, graphical, and symbolic capabilities. This lab
continues this approach for linear transformations from R™ to R™. Section 12.1 introduces linear
transformations from R™ to R™, while Section 12.2 discusses matrix representations. Sections
12.3 and 12.4 show how to compute the range and kernel in terms of two fundamental subspaces
associated with the matrix representation, the column space and the null space, respectively.

This lab does not require a knowledge of Lab 11. However, it relies extensively on Sections
2.1, 5.1, 6.1 to 6.4, and 7.2.

Section 12.1

Definition and Properties

A linear transformation T from R™ to R™ is a function which satisfies the
two properties

T(u + v) = T(u) + T(v), for any vectors « and v in R®
T(c*u) = c+T(u), for any real scalar ¢ and any vector u in R™

For u in R™, we call T(u) the image of vector u. Note that the image T(u) is in R™.

The two properties above can be combined into the single expression
T(cxu+kxv) = cxT(u)+ksT(v)

T is a linear transformation if and only if the preceding expression is valid for all scalars ¢ and &
and all vectors u# and v in R™. This alternative is interpreted to say that a linear transformation
‘splits apart’ linear combinations in a natural way. Of course, if T is linear then this ‘splitting’
applies to linear combinations of any number of vectors. If T is a linear transformation then
the image of a linear combination is the corresponding linear combination of the images (of the
individual vectors).

An important linear transformation is the function defined by a matrix multiply. If M is an
m X n matrix then for » in R™ the product M * u defines a function from R™ to R™;

T(u) =M *u

Show that T(u) = M * u is a linear transformation from R™ to R™. (Hint: use properties
of matrix multiplication.) Record your work below.

LAB 12



LAB 12 3

The linear transformation defined by the multiplication of a vector by a matrix appears in
many situations. We adopt the terminology ‘matriz transformation’to emphasize its importance.
In particular if the definition of a transformation is given by an expression and we observe that
the images can be computed by a matrix transformation, then we can immediately infer that T
is a linear transformation. For example, suppose that transformation T is given by

o([5])-15]

T defines a function from R? to R? such that image of vector © = [ : ] is [ g jl . Geometrically
we have
Vectoru Vector T(u)
[xy)
(0.0) (0.0) (0]

To show that T is a linear transformation you could proceed algebraically and verify the two
properties in the definition. Or you could determine a 2 x 2 matrix M such that T(u)=M * u.

Find M such that T(u)=M * u. Record matrix M below.

M=

Warning: just because you are not able to find a matrix M that works does not imply the
transformation T is not linear. Possibly you were just not clever enough to figure out a matrix
that works.

Show that each of the following transformations is linear by verifying that it is a matrix
transformation. Display the matrix in each case.

D151 elEh)-L]
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Check your conjecture for the matrix transformation using matrix multiplication.

There is certainly a close relationship between linear transformations and linear combinations
as we indicated above. But the connection can be extended further to determine which trans-
formations from R™ to R™ are linear. From the preceding experiments you may have noticed a
pattern for determining the matrix. In particular, since we were to have a ‘matrix transforma-
tion’, M * u, the entries of the image are linear combinations of the entries of vector u. From
matrix multiplication we have that

1’0‘!1)1(M) * U M1t + MUz + -« - + Mty

rows(M) xu Mo1Uy + MUz + -+ + + Manity
M x u= , = .

rowm (M) x u M1 U1 + Mot + « « + + Mapptin

We use this observation in two ways:

1. If the entries of the image T(x) are not linear combinations of the entries of vector u,
then T is not a matrix transformation.

2. If the entries of the image T(w) are linear combinations of the entries of vector w, then
the matrix for the transformation has its rows formed from the coefficients used in the
linear combinations.

To complete the connections started above, it would be convenient to conclude that a transfor-
mation T from R™ to R™ is linear if and only if T is a matriz transformation. Currently we
can not draw this conclusion, but we deal with this issue in the next section.

For each of the following transformations determine if they are linear or not. If it is linear
display the matrix of the transformation. If it is not linear explicitly show that one of the
properties for a linear transformation is violated. Put your responses near the definition of the
transformation.

x 2r ~y - 22
(1)) (7] Lea]
e 0 Y 4z + 2y
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T 5y + z
_ _ T ) _ z+8
R 1; =| =z 6g+22 S([y])_[—&t-é-gy]
T oy +z
— _ z ) _ l/z
BN (7)) %]

Since every vector in R™ is a linear combination of vectors in any basis for R", knowing the
action of the linear transformation on the basis vectors gives us enough information to determine
the image of any vector. This follows from the properties of linear combinations and the behavior
of a linear transformation. Briefly, if we know that

{w1,wz,...,wn}
is a basis for R® and linear transformation T gives the images of these basis vectors as
{T(w1)=p1, T(wz)=p2, ..., T(wn)=pn}
then
T(u) = eipr+capat... + caPn

where the coefficients {¢y,cq, ..., cn} are those scalars that are used to express u in terms of the
basis {w1, Wa,. .., Wn};

u = ciwy+caws+ ... + Wy

Example 1. Let B = {w1, w2, ws} be a basis of R®, where

1 1 1
w1 = 0 ; we = 1 N wg — 1
0 0 1
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Let T be a linear transformation from R3 to R3 for which

1 -1 0
T('wl) = 2 ’ T(‘UJQ) = 0 ) T(W3) = 2
3 4 -1
11
To compute T{(u) for u= | 13 | using the analysis above, we need to determine the coefficients
8

c1,¢2, and eg so that
u= Ciwi+cows +Cc3ws

and then form the corresponding linear combination of the images of the basis vectors.

Find a linear system whose solution gives the coefficients c¢1, c2, and c3. Display the coefficient
matrix, right-hand side, and the solution below. (Use MATLAB to compute the solution.)

You should find ¢; = —2,¢9 = 5, and ¢3 = 8.

Determine T(w). Show your steps below.

We have
T(u)= 1 T(w1)+eT(wz) +e3T(ws)

Express this linear combination of columns as a matrix multiply; that is, find a matrix M such
that T(u)= Mx ‘some vector’. Display M and the ‘vector’in the space below.

Explain the connection between M and the ‘wector’.
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1.

2'

Exercises 12.1

For each of the following transformations determine if it is linear or not. If it is linear
display the matrix of the transformation. If it is not linear explicitly show that one of the
properties for a linear transformation is violated.

2515

The transformation T from R* to R, the real numbers, is defined as follows:

T =zr+ytz+w

W R

w

If T is a linear transformation display the matrix of the transformation. If T is not linear
explicitly show that one of the properties for a linear transformation is violated.

Express transformation T in terms of a dot product. Explain how this alternate formula-
tion can be used to reveal whether T is linear or not.
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1 2 0
3. Let B = {w;, w2, w3} be the basis of R®withwy = | 1 [, wa= |0 [, wg=] 1
0 1 2
Let T be a linear transformation such that the images of the basis vectors are
1 -1 0
T(wl) = 0 y T(‘UJ2) = 0 ; T(W3) = 3
-2 1 -5
1
a) Compute T(u) for u = 1
-5
b) Determine the matrix of the linear transformation T.
1 0 0
. 4 0 1 0
4. Let B ={wy, w2, w3, w4} be the basis of R* with w; = o lhw2=| [ [hws=],
0 0 1
0
wy = (1) . Let T be a linear transformation such that the images of the basis vectors
1
are
1 -1 0 —6
0 0 3
T(w1) = 2| T(ws) = B E T(ws) = ; T{ws) = 5
3 0 1 7
1
a) Compute T(u) for u = _g
1
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0
b) Compute T(u) for u = g
1
0
c) Compute T(u) for u = g
0

(Do you really have to do any computation here? Explain.)

d) Determine the matrix of linear transformation T.

5. For any linear transformation T, not just matrix transformations, explain why the image
of the zero vector must be the zero vector.

6. Explain how to use the result in the preceding exercise to develop a test to show a trans-
formation is not linear.
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Section 12.2
Matrix Representations

A fundamental result of linear algebra is that, loosely speaking, ‘every linear transformation
is a matrix multiplication.” In the previous section we showed that if a transformation T from
R™ to R™ is a matriz transformation then T is linear. We also showed that if the entries of
the image T(u) are linear combinations of the entries of u then T is a matrix transformation
(and hence linear). Here we show that every linear transformation from R™ to R™ is a matrix
transformation and find its matrix representation. We also explore matrix representations of a
linear transformation relative to different bases.

Let {wy,w2,...,wy,} be a basis for R® and T be a linear transformation from R® to R™
such that the images of the basis vectors are

{T(w1)=p1a T(“’Z):mv S T(wn)=Pn}
For an arbitrary vector » in R” there exist scalars ¢1, cg, ..., ¢, such that
U = Ciwy+cows+t - 4+ Cpiy,

and since T is linear

T(u) = c1p1+cepe+ ...+ cnpn

Hence image T(u) is a linear combination of columns p; in R™ which implies that T() can be
represented as a matrix multiply. We have

c1

c2
T(u)=[p1p2...pn] | . | =Mc

Cn

where M is an m X n matrix and ¢ is a vector in R™:

(4]
M=[pip2...pa), c=

en
The columns of M are the images of the basis from R® and M is called the matrix represen-

tation of linear transformation T. Thus T is a matrix transformation. Combining this with the
results in Section 12.1, we have the following important result. !

1This result can be generalized to linear transformations between any two vector spaces.
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A transformation T from R™ to R™ is linear if and only if it is
a matrix transformation.

The expression for the matrix representation M of linear transformation T depends upon
the basis used in R™. Consider, for instance, the plane linear transformation T from R3 to

£
R? defined geometrically as the projection onto the xy-plane: T Y = [ z ] For the
z
1 0 0
standard basise; = | 0 |,e2 = 1 |,andeg = | O

0 0 1

T(el):[f)}, T(ez):[‘l’], T(e?,)ig}

Thus the matrix representation of T relative to the standard basis in R3 is
(1.0 0]
M = T(e) T(e2) T(es) | =

010
and we can compute images of T as

T T [
1 00 T
z 2 z

In certain situations it is advantageous to have vectors expressed in terms of a basis that is
‘convenient’ for the situation at hand. For instance suppose that the motion of an object in R3
is restricted to a plane and we need to project its path onto the xy-plane. The coordinates of the
points along the object’s path are given in terms of a convenient basis for the plane. It follows
that the matrix representation of the projection in this case is formed from the (projection)
images of the two basis vectors for the plane. In the xy-plane the coordinates of the image of a
point along the object’s path are found from the product of the matrix representation and the
coordinates of points along the path in the plane. For example, suppose that the object’s path
lies in plane

z—2y+42=10

10
and wg = 3 | for this plane. Then every point on the path
-1

and we use basis wy =

— N O

is a linear combination of w, and wq. We express the coordinates of such a point as the scalars

—4
used on the basis vectors to produce the point. {See Lab 7.) Suppose that point v = 0| is
1

on the object’s path. Then the coordinates of this point in the plane relative to the basis
S ={ w3, wa} are found by solving the linear system obtained from
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—4 0 10 . -4

clwy +Cowg = 0| =|2 3 {: 1 ] = 0

1 1 -1

; p 0.6000

In MATLAB we use command ¢ = [0 2 1;10 3 -1]'\[-4 0 1)’ to find that ¢ = —o4000 |- I

0.6000

—0.4000 l It follows that the

coordinate notation as established in Lab 7 we have [v]g = [

projection of v into the xy-plane is
¢ 10 0.6000 —4
Me = [T(w1) T(wz)] [v]g = [ 2 3 l [ —0.4000 } = [ 0 l

Of course this result can be obtained directly since we knew the coordinates of point v in the
standard xyz-coordinate system. However, the value of the procedure is that we need only know
the coordinates of points along the path in terms of the basis vectors w; and wsy. To illustrate
this, let Q = {q;, 7 = 1,2,...,20} be a set of points along the object’s path with coordinates
.2 i 1 where ¢; = .1,.2,...,2 relative to basis {w), we}. The projections of the points in
2
ti

t2 -1
of the images are obtained from the product of the matrix representation and the coordinates
of the points in terms of the basis vectors {w,, wy}.

set Q are obtained as M . (See Figure 1.) It is important to note that the coordinates

Object's Path

+
+
+ +  Projection

Figure 1.
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There is an implicit assumption that the basis used for representing images in R™ is the
standard or natural basis (the columns of the m x m identity matrix). If images in R™ are
to be represented as linear combinations of a basis other than the standard basis, the matrix
representation will change. In order to develop the matrix representation of T in such a case we
briefly review some preliminary ideas.

Let T be a linear transformation from R® to R™, A = {a1,a2,...,an} be a basis for R”,
B = {b1,ba,...,bm} be a basis for R™, and M be the matrix representation of T relative to
A and B. Then the j-th column of M is the coordinate vector of the image T(a;) relative to
basis B. Example 1 contains the essential ingredients for using MATLAB to determine the matrix
representation of T relative to A and B. The general approach is developed after the example.

Example 1. Let T be reflection about the y-axis in the plane. That is, T is the linear

transformation from R? to R? such that T : = —ya: ] Find the matrix representation

M of T relative to the bases A = {al,a2} and B = {b1, b2}, with

S H I P

Enter the vectors al, a2, bl, b2 into MATLAB . Define matrix A= [e1, a2] and B= (b1, b2]. The
first column m1 of M is the coordinate vector of T(al) relative to B.

T(al) = [ _g ] ml = [T(al)lyz

Then the coordinate vector of T(al) relative to B is the set of coefficients that express T(al)
as a linear combination of bl and b2. In MATLAB we have

ml = B\[-5 2}’

We find that ml= _; . Determine T(a2) and m2, the second column of M. Construct

" the matrix M. Record your results below.

T(az) = m2 = M =

There is a direct way to compute the matrix M in Example 1 without reference to its
columns. Let IN be the matrix of the transformation relative to the natural bases. Then the
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images of the basis vectors in A are the columns of N * A, so M = B \ (N * A). Determine
matrix IV in Example 1 and use MATLAB to compute M as indicated. Record your results below.

N = M =

We have described linear transformations from R™ to R™ as matrix products. The formal
result is as follows. Let A and B be bases for R® and R™, respectively. For each vector u in R™,

(T(u))g = M [u] 4

where M is the matrix representation of T relative to A and B, [u] 4 is the coordinate vector
of u relative to A, and [T'(u)]g is the coordinate vector of T(u) relative to B (See Lab 7 page
5). In words this result says, given the coordinates of vector u relative to basis A we
multiply them by the matrix representation M to obtain the coordinates of the
image of u relative to the B basis. Basically the information in u is encoded via the A
basis and transformed by multiplication by M into a code relative to the B basis. At times it
may be necessary to encode a vector u given in the standard basis and decode its image into the
standard basis. These actions are a preprocessing step and post processing step, respectively. It
follows that the encoding step in MATLAB is

[u] 4 = A\u
and the decoding step is
T(u) = Bx [T'(u)lg

A summary of results follows:

T:R™ == R™ ~ linear trans.
A={al,a2,...,an} B ={b1,b2,...,bm} bases
A =[al,a2,...,an] B =[b1,b2,...,bm)] matrices
encoding: [u] 4 =A\u decoding: T(u) = BxMx(A\u)

Let IN be the matrix representation of T relative to the standard bases for R* and R™. The
matrix representation of T relative to A and B is given by MATLAB statement

M = B \(NxA)
For each u in R™ the image in the standard basis is given by the MATLAB statement

Tu=B*Msx(A\u)
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Exercises 12.2

x4+ 2y

1. Define T: R2 5> R2by T [‘” =
Yy 22—y

] . Let A be the standard basis for R? and

let B be the basis B = { —; , (2) ]} Compute the matrix representation M of T
relative to each of the following pairs of bases. Record the matrix in the space provided.
a) B and A. M =

b) A and B. M =

c) B (and B). M =

2. Define T: R? — R? by T([ Z ]) = [ _scy } Let A be the standard basis for R? and

let B be the basis B = {[ 1 ] , ! ]} Compute the matrix representation M of T

-1 2
relative to each of the following pairs of bases. Record the matrix in the space provided.
a) Band A. M =
b) A and B. M =
¢) B (and B). M =
z : 1 0 1 0
N 0 0 1 1
3. Define T:R* > R3by T ’; =ly+z | LetA=al o1 ol lol0] 1
¢ Zt 1| [1] [o] |o
1 0] [1
be a basis for R* and let B = 1(,l1},10 be a basis of R®. Compute the
0 0 1]
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matrix representation M of T relative to A and B. Record the matrix in the space pro-
vided.

M=
4. Let T: R* — R® be the linear transformation defined by T(u) = Nu, where N =
o HRIGRE
0 1 2 1. Let A= ol*lol 1111 be a basis for R* and
-l -2 10 0] lo 1 0
. 1] [o 0
let B = 0(,|]1],]0 be a basis of R®. Compute the matrix representation
1 1 1
M of T relative to A and B. Record the matrix in the space provided.
M=
11 [o 1
5. Let A be the basis of R? defined by A = {v1,02,v3} = 1],]11],]2]5. Define
0 1 3
T: R® - R? by
1 4 [ 7
Tvl)={ 2 [,T(w2)=]5 |, T(v3)= | 8
3 6 | 9
Compute the matrix representation M of T relative to .A (and .4). Record the matrix in
the space provided.
M=
L N N R R

LAB 12
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Section 12.3
Determining the Range in MATLAB

Let L: R® — R™ be a linear transformation and let A be its matrix representation relative to
the standard bases for R® and R™. For z in R™ the image L(x) = Az lies in R™. For example,
suppose L: R* — R3 is a linear transformation whose matrix representation is

1 -1 -2 -2
A=|2 -3 -5 -6
1 -2 -3 —4

The image of = [ 12 -10 ]’ under L is given by

1 -1 -2 -2 ; 1
L(a:) =Azxz=|2 -3 -5 -6 -1 =11
1 -2 -3 -4 0 0

The range of a linear transformation L: R®™ — R™ is the sub-
space of R™ consisting of all images of vectors from R".

1t is important to observe that the vector A is a linear combination of the columns of A. (This
was the essence of Exercise 10 in Section 3.2.) For the matrix A and the vector x above,

1 -1 -2 -2 1
Az =1|2|+2| -3 |-1|-5|+0| -6|=]1
1 -2 3| | -4 0

Since Az is a linear combination of the columns of A it follows that

range(L) = column space of A.
This result is critical for finding the range of a linear transformation. Thus we ‘know the range
of L’ when we have a basis for the column space of matrix A. There are two simple ways to find

a basis for the column space of matrix A.

e The transposes of the nonzero rows of rref(A’) form a basis for the column space of A.

e If the columns of A containing the leading 1’s of rref(A) are k; < k3 < --- < kr, then
columns ki, k2, - - -, ks, form a basis for the column space of matrix A.

For the matrix A above we have
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10 -1

~n_ |01 1

rref(A’) = 00 o0

00 O
1 0

and hence columns 0 | and | 1 | are a basis for range of L. In the latter case

-1 1

10 -1 0

rref(A) =0 1 1 2

00 00O

The leading ones point to columns 1 and 2 of A as a basis for the column space of A and hence a
basis for the range of L. See also MATLAB routine lisub, which determines a linearly independent
subset of columns directly.

In summary, rref(A) gives sufficient information to find the range of a linear transformation.

Exercises 12.3

Find bases for the range of each linear transformation whose matrix representation is given.

Matrix Representation Basis for Range
1 2 5 5
1A= -2 -3 -8 -7
-3 2 -7
2 -2 6
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3 3 -3 1 11
3.C=|-4 -4 7 -2 -19
2 2 -3 1 9

ﬂ M L

Section 12.4
Determining the Kernel in MATLAB

In this section we use MATLAB to compute the kernel of a linear transformation in terms of
the null space of its matrix representation. Every matrix representation in this lab is relative to
standard bases. ’

Let L: R® — R™ be a linear transformation and let A be its matrix representation relative
to the standard bases for R® and R™. For y in R™, each vector @ in R™ such that L(z) =y is
called a pre-image of y. For example, suppose L: R* — R3 is a linear transformation whose
matrix representation is

1 -1 -2 -2
A=]2 -3 -5 -6
1 -2 -3 -4

!
Vector ¢ = [ 1 -3 11 ]’ is a pre-image of y = [ 000 ] . This can be confirmed by
verifying that Az = 0 or by verifying that

1 -1 -2 -2 0
Az =1|2{-3]| -3 |[+1| -5 |+1} -6 =10
1 -2 -3 -4 0

The set of all pre-images of the zero vector in R™ forms a subspace of R™, called the kernel
of L, denoted ker(L).

The kernel of a linear transformation L: R* — R™ is the sub-
space of R™ consisting of all vectors @ such that L(z) = 0.

LAB 12
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Since a vector @ in R™ lies in the kernel of L only if
L(z)=0
it follows that ker(L) is the set of all solutions of the homogeneous system
Az = 0.

The set of all solutions is often called the null space of the matrix representation A. Thus we
‘know the kernel of L’ when we have a basis for the null space of the matrix representation A.
To find a basis for the null space of A, we form the general solution of Az = 0 and ‘separate
it into a linear combination of columns using the arbitrary constants that are present.” The
columns employed form a basis for the null space of A. For this procedure we use the command
rref(A).

For example, if L: R* — R® is a linear transformation whose matrix representation is

1 -1 -2 -2
A=12 -3 -5 —6
1 -2 -3 —4
we have
1 0 -1 0
rref(A) =0 1 1 2
0 a6 00

We choose the unknowns corresponding to columns without leading 1’s to be arbitrary, so set
r3 =1 and x4 = 1.

Then z1 = z3 = r and 3 = —x3 — 224 = —r — 2t. The general solution is given by

T T 1 0
e = T2 | _ | —r— 2t — -1 1t -2
T3 r 1 0
T4 J t 0 1
1 [ 0
Hence the columns _i and _g form a basis for ker(L). See also MATLAB routine hom-
0 1

soln, which displays the general solution of a homogeneous linear system. In addition MATLAB
command null will produce an orthonormal basis for the null space of a matrix.

In summary, rref(A) gives sufficient information to find the kernel of a linear transformation.

L T P I
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Exercises 12.4

In Exercises 1 to 3, find bases for the kernel of each linear transformation whose matrix

representation is given.

Matrix Representation

1 2 5 5

1“4‘[—2 ~3 -8 —T
3 2 -7
2.B=| 2 -1 4
2 -2 6

3 3 -3 1 1
3.C=| -4 -4 7 -2 -19
2 2 -3 1 9

LAB 12
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1 2 4 -2
4. Let A=|2 1 2 0| andL{z) = Az.
0 3 6 -4

a) Find a basis for the kernel of L or equivalently the null space of A. List the basis
below.

b) Find a basis for the row space of A. List the basis below.

c) Compute the dot product of each of the basis vectors of the null space of A with each
basis vector of the row space of A. Write a description of the results below.

d) If w is in the null space of A and v is in the row space of A, then what is dot(w,v)?
- Explain your answer.

e} Fill in the blank: Every vector in the row space of A is
to every vector in the null space of A.

f) Are there any vectors in the row space of A (considered as columns) that are also in
the null space of A7 Explain your answer.
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5 5 3
5. Let A= | —7 -7 -3 | and define L(x) = (A—tl)x.
5 5 3

a) Experiment to find a positive integer t so that the kernel of L is not the zero vector
alone. Then find a basis for the kernel using the value of t you found.

b) Let y = —5* your basis vector from part a and compute z = A *y. Express z in
terms of t and your basis vector. Geometrically what is the relationship between y
and 27

c) Repeat part a), except find a negative integer t.

d) Let g= 8+ your basis vector from part c) and compute 8 = A x q. Express s in terms
of t and your basis vector. Geometrically what is the relationship between ¢ and 8?7
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e) For t = 0 the kernel of L is not the zero vector alone. Find a nonzero vector » in the
kernel of L(z) in this case.

f) Let P be the 3 x 3 matrix whose first column is the basis vector from part a}), second
column is the basis vector from part ¢) and third column is the vector from part e).
Compute @ = P~*AP. Describe the relationship between Q and other parts of this
problem.

g) The matrix Q in part f) is a(n) matrix.

<< NOTES; COMMENTS; IDEAS >>
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The Eigenproblem

Topics: routines matvec, evecsrch and mapcirce; eigenvalues, eigenvectors, char-

acteristic polynomial, roots of the characteristic polynomial; applications.
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Introduction

This lab contains both a geometric and an algebraic development of eigen concepts. The
geometric development in Section 13.1 uses the function f(a) =Aa where A is a 2 X 2 matrix
and  is a vector in R?. We compare the input & and output Az graphically using routine
matvec. This routine employs MATLAB ’s graphical user interface to actively engage the student
in experiments which provide a foundation for basic eigen concepts. We follow with routine
evecsrch, which automates the manual search of matvec. Section 13.1 requires only matrix
algebra, the notion of length of a vector, and linear independence. It can be used before deter-
minants have been developed. Several exercises explore f{(z) =A2 as a linear transformation
using the image of the unit circle within another routine mapcire.

Section 13.2 develops the algebraic solution of f(x) =A«x = Az using MATLAB commands for
determinants, the characteristic polynomial and its roots, and reduced row echelon form, then
concludes with an introduction to MATLAB ’s command for eigen computation. This section does
not depend on Section 13.1 so it can be used to emphasize the algebraic aspects of the eigen
problem. With Section 13.1 this section provides the complement of the geometric exploration.

Section 13.3 provides a set of experiments to explore properties of eigenvalues and eigen-
vectors, diagonalizable matrices, and applications involving matrix powers, Markov population
models, and graph theory applied to a geographical problem involving trade routes.

Section 13.1

Discussion of the General Concept

From a general point of view an eigenvalue is an ‘item’ in a situation (in mathematics we say
problem) that must take on specific values in order for the situation to have a desired outcome.
The ‘item’ (sometimes referred to as a design parameter) is often a constant that can be changed
or tuned in an effort to produce a desired outcome (or solution) for the situation. From the
description of the situation we must develop an appropriate strategy in order to determine a
setting (in mathematics we say value) for the eigenvalue so we can achieve the desired outcome.
Hence the determination of an eigenvalue is required as a step of a process to achieve a desired
outcome (solution). It follows that we must solve for an eigenvalue to ensure that the desired
solution exists. Unfortunately, more than one setting (value) for the eigenvalue could lead to a
solution, but not all such settings necessarily produce the outcome we desire.

Consider designing a clock mechanism by using a mass M attached to a spring which is fixed
to a support. We desire to have the mass-spring system vibrate so that at 1 second intervals the
mass is back at its original position to trigger the movement of a second hand. At time t let the
distance of the mass from its original position be denoted by z(t). Then a simple mathematical
model for this situation is given by the differential equation
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d?z(t)
di?

+Az(t) =0

where we have constraints 2(0) = 0,z(1) = 0. (The constraints are called boundary values.) It
is known that the eigenvalue A depends on physical characteristics of the spring and the size
of the mass. It happens that there are infinitely many values of A that will produce a solution
for this problem, but not all such values of A give a solution that we want to use in the design
of our clock. For instance, A = 0 gives the solution z(¢) = 0; that is, the mass never moves.
Hence the second hand remains fixed. Certainly this choice for the eigenvalue A gives a valid
mathematical solution to the problem, but the corresponding solution is unacceptable if we
hope to sell clocks. An acceptable solution is called an eigenvector (in this case an
eigenfunction) associated with the eigenvalue used to obtain that solution.

Another situation where we vary an ‘item’ to achieve a result involves tuning in a particular
radio station. The tuning knob of a radio varies the capacitance in the tuning circuit. In this
way the resonant frequency is changed until it agrees with the frequency of the station we de-
gire. In a broad sense an eigenvalue was selected by the tuning knob to produce a desired solution.

The basic equation that arises to compute eigenvalues A and corresponding eigenvectors & is
@)=

The situation determines the details of the function f. Intuitively this equation says that we seek
an input x such that output f(x) is a scalar multiple of . A simple geometric interpretation is
that x is an eigenvector of f provided that output f (x) is parallel to input @. The associated
eigenvalue X is viewed as a magnification factor which affects the direction and length of the
output. An easy model of this situation is to consider f (x) = Az in which A is a 2 x 2 matrix
and 2 is a vector in R2. In this case the eigen equation is

Ax =z

So we seek vectors @ so that vector y = A is parallel to @. To illustrate this graphically we
use MATLAB routine matvec. For a user-chosen 2 x 2 matrix A use the mouse to choose an input
vector 2 from the unit circle. This input vector is displayed graphically, then the output vector
y = Az is computed, scaled to have length 1, and displayed graphically. The routine allows
multiple selections of inputs @ so you can ‘home-in’ on an eigenvector.

Example 1. In MATLAB type matvec. From the menu displayed choose the option for the built-in
demo. Your screen should look like Figure 1.
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Function: Matrix times Vector

A* (input) ==>(output) A=1%

Select nput

Compute Output

Help | Restart I&ur

Figure 1.

Click on the button Select Input. A message will appear directing you to click on (the circum-
ference of the) circle at the right to select input . After you make your selection the coordinates
of 2 are displayed and the vector drawn from the center of the unit circle.

Next click on the button Compute Output. The coordinates of ¥ = Az are shown together
with the coordinates of the scaled output vector and its graphical representation.

The More button, which appears after the execution of the ‘Compute Output’, encourages fur-
ther experimentation. Click on this button. Now click once again on ‘Select Input’. A small
circle remains on the circumference of the unit circle to indicate where previous inputs were
chosen.

Use the mouse to choose inputs until you ‘home-in’ on an eigenvector of matrix A. (Hint: The
origin is placed at the center of the circle. Choose inputs in the first quadrant.)

LAB 13
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Once you have a close approximation to an eigenvector record the coordinates below.

input = output = scaled output =

(By close approximation to an eigenvector we mean geometrically that the input and output are
nearly parallel and algebraically that the first few decimal places of the coordinates of the input
and scaled output are the same.)

Search for a second eigenvector by choosing input vectors in the second quadrant. Once you
have a close approximation to an eigenvector record the coordinates below.

input = output = scaled output =

To exit matvec click on the QUIT button.

15
5 3
that for the eigenvector 2 in the first quadrant, the output Az was also in the same quadrant.
This implies that the corresponding eigenvalue is positive. The numerical value of corresponding
eigenvalue A; is obtained from the basic equation Axq = \1x; by taking the norm of both sides
and solving for Ap;

In Example 1 matrix A = ] . From the graphical displays you should have observed

norm(A * x1)
‘ Al I: —_—
norm(x1)

But here 2, is a unit vector so the denominator is 1 and we have seen from geometric consider-
ations that this eigenvalue is positive so

A1 = norm(A * 1)

0.6340

0.7733 ] Estimate the corresponding eigenvalue A;.

The eigenvector &1 is approximately [
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Record your work below.

A=

Let @2 denote the eigenvector in the second quadrant. You should have observed in Example
1 that output Awx2 was in the fourth quadrant. In the space below give an argument to verify
that the corresponding eigenvalue Ay must be negative.

0.7733
—0.6340

yields the absolute value of the second eigenvalue. But geometric considerations have shown that
this value must be negative. Estimate the corresponding eigenvalue As. Record your work below.

Eigenvector x2 is approximately . Once again, the command Ag = norm(A * z2)

Ag =

The routine matvec used in Example 1 lets you experiment to determine eigenvectors of a
2 x 2 matrix. By clicking on the unit circle you really chose a direction for the input vector a.
The calculation of the output vector y = Aa determines another direction. We say we have an
eigen direction of A provided the input and output directions are parallel. That is, input and
output are in exactly the same direction or in exactly opposite directions. The use of the unit
circle is a convenience, really any circle centered at the origin could be used. To emphasize this,
in the space below give an argument that verifies that if @ is an eigenvector of A, that is Az
= Az, then kxx is an eigenvector for any scalar k # 0.

(The preceding shows that the set of eigenvectors of A corresponding to an eigenvalue X is closed
under scalar multiplication.) Thus it is the ‘direction’ that is important for an eigenvector, not
its length. That is why we could scale the output in matvec and display it on the unit circle.

For a 2 x 2 matrix A the search for eigenvectors can be illustrated by selecting vectors
that encompass directions around the unit circle and checking to sec if the input and output =
Axinput are parallel. Routine evecsrch automates this process. The search starts by selecting
an input at a randomly chosen point on the unit circle and graphing the corresponding radius.
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Next the output is computed, scaled to the unit circle, and graphed. If the input and output are
parallel the images are retained, otherwise both are erased. When an eigenvector is detected its
components are displayed. The routine stops when it completes the search of the ‘entire’ unit
circle.

In MATLAB type evecsrch and follow the directions. Use evecsrch to determine the eigen-

vectors of A = (1) *fli ] Record the eigenvectors below.

By observation, explain why these eigenvectors are linearly independent.
Determine the corresponding eigenvalues. Show your work below.

In the space below explain why the radii drawn form an ‘X’ on the unit circle in the output
from evecsrch.

6 7
0 6
ing eigenvalues. In the space below summarize your observations and record your calculations.

Use evecsrch to investigate the eigenvectors of B = and determine the correspond-
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Next compare the results of evecsrch for the preceding matrices A and B in terms of eigen-
vector information. What is different? Put your discussion below.

15
5 3
from Example 1. Verify that the eigenvectors are the ones that were computed there.

Finally, use evecsrch to search for the eigenvectors of A = , which is the matrix

Exercises 13.1

-2 0

a) Use routine evecsrch to approximate eigenvectors @7 and x5 of A.

1. LetA:[ 6 1].

x = T2 =

b) Use routine matvec to determine the output when the input is selected close to z;.

Is the output in the same direction as 1, or in the opposite direction?

c) From part b it follows that the eigenvalue ); corresponding to z; is (circle one):

Positive Negative

d) Combine parts a and ¢ with command norm({A*x;) to approximate A;.

/\1%
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e) Use routine matvec to determine the output when the input is selected close to @3.

Is the output in the same direction as @3, or in the opposite direction?

f) Combine parts a and e with command norm(A*x;) to approximate Ag.

Ag =8

g) Use MATLAB to determine whether A * ; = A\ @] and A * 23 = Ax3. Explain any
discrepancies in the space below.

11

a) Use routine evecsrch to approximate eigenvectors @1 and @2 of A.

2. LetA.———[1 9].

Xy = &Tg =

b) Use routine matvec to determine the output when the input is selected close to x;
that lies in the third quadrant.

Is the output in the same direction as @ or in the opposite direction?

c) Combine parts a and b with command norm(A*x;) to approximate A;.

AL =~

d) Use routine matvec to determine the output when the input is selected close to ®2.

Is the output in the same direction as @2, or in the opposite direction?

e) Combine parts a and d with command norm(A*xz) to approximate Ag.

Ag%

f) Use MATLAB to determine whether A * ;1 = A\ and A * @3 = Apza. Explain any
discrepancies in the space below.
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3. Use routine matvec to approximate an eigenvector of 4 = { 2

3 ..
0 0 ] that is in the first

quadrant. Record your approximate eigenvector

4. Use the matrix A from Exercise 3.

a) Algebraically find an eigenvector z = [ il ] by solving the matrix equation Az = 2=z
2

for z; and . Show your work in the space below.

b) How many solutions were there to the matrix equation Az= 2z in part a?

c) Take your solution from part a and scale it to have length 1. Record that vector below.

d) Find another eigenvector of length 1 which is parallel to your solution in part c. Record
that vector below.

e) What solution from part a cannot be scaled to have length 1? Explain.

.LetA=[ 5 “1].

-1 5

a) Use matvec to approximate an eigenvector of A that is in the first quadrant. Record
that vector below. (Make selections until at least the first two decimal places in the
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input and scaled output vectors agree.)

b) For this matrix there is a second eigenvector that is orthogonal to the one you found
in part a. Determine this vector using matvec. Record that vector below. (Make
selections until at least the first two decimal places in the input and scaled output
vectors agree.)

Verify that the vector in part a is orthogonal to the vector you found here. (Actually it
may only be close to orthogonal with the vector in part a since we are using agreement
in only the first two decimal places to indicate the input and scaled output vectors are
parallel.)

6. Let A be a 2 x 2 diagonal matrix. Perform a set of experiments using routine evecsrch
to determine the eigenvectors and corresponding eigenvalues of A. Below each of the
following matrices record your findings.

CETR E T X

Perform additional experiments to formulate a conjecture that describes the eigenvalues
and corresponding eigenvectors of a 2 x 2 diagonal matrix.

Conjecture:

7. Let A be a 2 x 2 upper triangular matrix . Perform a set of experiments using routine
evecsrch to determine the eigenvectors and corresponding eigenvalues of A. Below each
of the following matrices record your findings. -
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o]

Perform additional experiments to formulate a conjecture that describes the eigenvalues
and corresponding eigenvectors of a 2 x 2 upper triangular matrix.

Conjecture:

8. Let A be a 2 x 2 lower triangular matrix . Perform a set of experiments using routine
evecsrch to determine the eigenvectors and corresponding eigenvalues of A. Below each
of the following matrices record your findings.

SORET]

Perform additional experiments to formulate a conjecture that describes the eigenvalues
and corresponding eigenvectors of a 2 x 2 lower triangular matrix.

Conjecture:

9. Let A be a 2 x 2 matrix with a zero row. Perform a set of experiments using routine
evecsrch to determine the eigenvectors and corresponding eigenvalues of A. Below each
of the following matrices record your findings.

o] 5] i3]
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10.

11.

Perform additional experiments to formulate a conjecture that describes the eigenvalues
and corresponding eigenvectors of a 2 X 2 matrix with a zero row.

Conjecture:

Let A be a 2 x 2 matrix with a zero column. Perform a set of experiments using routine
evecsrch to determine the eigenvectors and corresponding eigenvalues of A. Below each
of the following matrices record your findings.

3 (3

Perform additional experiments to formulate a conjecture that describes the eigenvalues
and corresponding eigenvectors of a 2 x 2 matrix with a zero column.

Conjecture:

Let A be a 2 x 2 symmetric matrix. Perform a set of experiments using routine evecsrch
to determine an algebraic relationship between the eigenvectors of A. Record your findings
below each of the following matrices.
0 -2 ~4 6
-2 1 6 0

&H

Perform additional experiments to formulate a conjecture that describes this algebraic
relationship between the eigenvectors of a 2 X 2 symmetric matrix.

Conjecture:

LAB 13
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Formulate a geometric analog of the algebraic relationship.

Geometric formulation:

In matvec we selected input vectors  from the unit circle and displayed their image
Yy = A =z scaled to the unit circle. In evecsrch we searched for inputs around the unit
circle so that the images would be parallel to the input vector. In Exercises 12 - 19 we
look at the entire set of images of the unit circle. We investigate the image of the unit
circle geometrically and provide experiments to investigate properties of this image for
certain types of 2 X 2 matrices.

Before performing the investigations below execute routine mapecirc which is our pri-
mary investigation tool. In MATLAB type mapcirc. From the first menu select the built-in
demonstration. From the second menu select not to see eigenvector information. In the
display generated by mapcirc the left graph shows the unit circle and the right graph
its image under the mapping (or transformation) by matrix A. As vectors z are selected
from the unit circle on the left their image A * & is computed and displayed on the right
graph. For more information on mapcirc use help. '

12. Use mapcirc to obtain the image of the unit circle for each of the following matrices.

Below each matrix record a sketch of the image and give a geometric description on the

line provided.
1 0| 3 0
0 4 0 -1

53]

[ ~1/2 0 ]
0 -1/2

t N
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Based on the previous experiments form a conjecture about the shape of the image of the
unit circle when A has the following forms.

For A = [ 3 2 } Conjecture: The image of the unit circle is
10 . . s ey

For A = [ 0 n l Conjecture: The image of the unit circle is
m 0 . . . .

For A = [ 0 1 ] Conjecture: The image of the unit circle is

13. Use mapcire to obtain the image of the unit circle for each of the following matrices.
Below each matrix record a sketch of the image and give a geometric description on the

line provided.
1 4 1 6
01 01

1]

1) ' o 1]
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Based on the previous experiments form a conjecture about the shape of the image of the
unit circle when A has the following forms.

1 k

ForA=[0 1

} with & > 0 and large Conjecture: The image of the unit circle is

For A = [ :: (1) ] with £ > 0 and large Conjecture: The image of the unit circle is

14. This exercise continues the type of investigation begun in the preceding exercise.
a) Design a set of experiments to investigate the behavior of the images of the unit circle

when A has the form [ (1) I; ] with k < 0 and | k | large. Summarize the behavior in

a short paragraph below.

How does the behavior here differ from the case in the preceding exercise where k > 0?7
(Be specific.)

b) Design a set of experiments to investigate the behavior of the images of the unit circle
when A has the form [ ’t (1) J with & < 0 and | k | large. Summarize the behavior in
a short paragraph below.

How does the behavior here differ from the case in the preceding exercise where k > 0?
(Be specific.)

15. Use mapcirc to obtain the image of the unit circle for each of the following matrices.
Below each matrix record a sketch of the image and give a geometric description on the
line provided.
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16.

17.

18.

E ]

From the geometric description above, what is the dimension of the null space of each of
these matrices?

Each of these matrices is (circlc one)  singular nonsingular

Conjecture: The image of the unit circle by a matrix is a

00 ] what is the image of the unit circle?

Is your conjecture immediatcly above still true? Revise it if necessary.

Design a set of experiments to develop a conjecture concerning the image of the unit circle
if A is a 2 x 2 nonsingular matrix.

Conjecture:

Based on the previous exercises, complete the following sentence:
The image of a unit circle under a 2 x 2 matrix is a , 3 , Or a

For each of the following 2 x 2 symmetric matrices use mapcirc to graphically determine
the eigenvectors from their images. On the lines below each matrix first describe the angle
between the eigenvectors and on the second line the angle between their images.
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19.

2]

Complete the following conjectures:

a) The eigenvectors of a symmetric matrix are

b) The images of the cigenvectors of a symmetric matrix are

¢) The images of the eigenvectors of a symmetric matrix form the

and of the elliptical image.

For each of the following symmetric matrices use mapcirc to determine the images of
the eigenvectors. When mapcire is over return to the command screen and type the
following commands. (Choose the option to display the eigenvectors.)

pts = ginput(2); image=pts’

You will be returned to the graphics screen generated by mapcire. The mouse pointer
symbol will be a plus sign indicating that you can collect information about points. Care-
fully position the plus sign at the end points of the images of the eigenvectors of A which
appear in a contrasting color. Click the mouse to record the coordinates of those points.
After the second click press ENTER to return to the command screen. The coordinates
of the end points of the vectors you clicked on will be the columns displayed in matrix
image. (If you feel you did not position the mouse correctly for the preceding measure-
ments, just repeat the commands above.)

Compute the length of each column of image using the following commands.
L1 = norm(image(:,1)),L2=norm(image(:,2))
Record these values on the lines provided and then record the closest integer to the value.
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26 —0.8

a)A_[_O_8 1‘4] Ll = . L2 =
36 28

b)A-[ o _0.6} Ll = S

= , L2=

[ 312 384
©) A= l ~3.84 0.88] b

Form a conjecture that describes the values of L1 and L2. (Hint: review Example 1 and
the discussion following it.)

Conjecture:

What do the lengths L1 and L2 represent gecometrically in terms of the image of the unit
circle which is an ellipse?

Conjecture:

Section 13.2

The Matrix Eigenproblem

We study a surprisingly simple problem involving eigenvalues and eigenvectors that extends
the 2 X 2 matrices considered in Section 1. Given an n X n matrix A, determine how to select
vectors x in R™ so that Az is parallel to . In the context of linear transformations, let L: R™ —
R™ be defined by

L(x) = Az.

We seek input vectors  that are parallel to the output vector Az. To determine a mathematical
model for this problem, recall that two vectors are parallel provided they are scalar multiples of
one another. Thus our objective is to find & in R™ so that

L{z) = Az = Az

where ) is some scalar. In the matrix equation Ax = Az, both the vector & and the scalar A
are unknown. By observation we see that one solution is z = 0 and then A could be any value.
This solution is uninteresting since A0 = 0 implies only that the zero vector is parallel to itself.
Thus we exclude £ = 0 from acceptable solutions. We state our problem as follows.
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The Eigenproblem for an n X n matrix A

Determine a nonzero vector  in R” and scalar A so that Az = Aa. We say
A is an eigenvalue of matrix A and z is an associated eigenvector.

A basic strategy to compute eigenvalucs and eigenvectors of a matrix A begins with the
matrix equation Ax = Ax and uses concepts we studicd previously. We have the following set
of equivalent expressions:

Az = dx —= Az = Moz <= Ax—A,z =0 < (A-A[,)z =0

Thus our cigenproblem has been recast as a homogeneous system of equations (A—AI)z = 0.
We seek = 7 0 that solves this homogeneous system. However, a square homogeneous system
has a nontrivial solution if and only if its coefficient matrix is singular. Matrix A—AT is singular
if and only if det(A—AI) = 0. Thus eigenvalue A is viewed as a tuning parameter to force
matrix A—ATI to be singular. It follows that with such values of A we arc able to determine
nonzero vectors @ so that Aex = Aa.

The expression det(A—AI) gives a polynomial of degree n in parameter A which we call
the characteristic polynomial of matrix A. The expression det(A—AI) = 0 is calied the
characteristic equation of matrix A.

The eigenvalues of A are solutions (roots) of the characteristic equation.
The corresponding eigenvectors are the solutions of the homogeneous system
(A—-XDNz = 0.

Computationally we find the roots of the characteristic polynomial to determine the
eigenvalues and then find the general solution of the corresponding homogeneous
systems to find the eigenvectors. Hence the solution of the eigenproblem for matrix A is
done in two steps.

In MATLAB , once matrix A is entered, we first find the characteristic polynomial of A.
Command

poly(A)

gives a vector containing the coefficients of the characteristic polynomial with the coefficient
of the highest power term displayed first and the constant term last. (Zeros are used for the
coefficient of any power of A that is explicitly missing.) Command

roots(poly(A))

gives a vector containing the roots of the characteristic polynomial, that is the eigenvalues of A.
We illustrate these commands in the following example,
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5 _8 —
Example 1. Let A = Z —2 —111 . Enter A into MATLAB . Then command
0 0 4
¢ = poly(A)
displays
c =
1 -2 -11 12

which implies that the characteristic polynomial of A is
1A% — 227 — 11A + 12
Using command
r = roots(poly(A))

displays (in format short)

4.0000
-3.0000
1.0000

Note: If exact arithmetic had been used, then the roots of the characteristic polynomial for this
matrix would have been integers 4, —3, and 1. Displaying r in format long e shows that a small
amount of roundoff error occurred in the computation and hence MATLAB could not display the
exact integer values. Such situations frequently occur in finding the roots of a characteristic
polynomial in MarLAB (and other software).

The eigenvalues of A are A =4,-3, and 1.

Once we have the eigenvalues A of a matrix A, the eigenvectors are determined as nontrivial
solutions @ of the homogeneous system (A—AI)z = 0. To find = # 0, compute rref(A—AI) and
construct the general solution of the homogeneous system. Linearly independent eigenvectors
corresponding to A are often obtained by extracting a basis for the general solution. This is
equivalent to finding a basis for the null space of A—AI or a basis for the kernel of the linear
transformation defined by L{z) = (A—AI)z. It is also a fact that eigenvectors corresponding
to different eigenvalues are linearly independent. (An alternate approach uses routine homsoln
applicd to A — AT for each eigenvalue A, which must be exactly specified.)
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5 -8 -1
Example 2. - For A = | 4 —7 —4 |, as defined in Example 1, the eigenvalues are A =
0 0 4

4, -3, and 1. To find the corresponding eigenvectors in MATLAB proceed as follows.

Case A =4: MATLAB command

M = rref(A — 4xeye(size(A)))

displays
M=
1 0 1
0 1 0
0 0 0

The general solution of (A — 4@)x = 0 is given by

r3=r, z9 =0, T1=r.
1 1
Hence ¢ =7 | 0 | and we take | 0 | as an cigenvector corresponding to eigenvalue A = 4.
1 1

Note that we could have set constant r to any nonzero value to obtain an eigenvector. Hence
eigenvectors corresponding to an eigenvalue are not unique.

Case A = —3: MATLAB command

M = rref(A — (—3)*xeye(size(A)))

displays
M=
1 -1 0
0 0 1
0 0 0

The general solution of (A + 3I)x = 0 is given by

:173:0, Te =T, r=r
1 1
Hence z =r | 1 | and we take | 1 | as an eigenvector corresponding to eigenvalue A = —3.
0 0

Case A =1: MaArLAB command
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M = rref(A — lxeye(size(A)))

displays
M=
1 -2 0
0 0 1
0 0 0

The general solution of (A — 1I)z = 0 is given by

xg = 0, xp =T, T = 2r.
2 2
Hence z =r | 1 | and we take | 1 | as an eigenvector corresponding to eigenvalue A = 1.
0 0
1
Since matrix A had 3 distinct eigenvalues it follows that the eigenvectors | 0 |, | 1 |, and
1 0
2
1 | are linearly independent.
0
7T -4 0
Example 3. Let A = 8 —5 0 |. Command r = roots(poly(A)) reveals that the
-4 4 3

eigenvalues of A are A = 3,3,—1. We find the eigenvectors corresponding to A = 3 as follows.
(We omit the case for A = —1.)

Case A =3:
M = rref(A — 3xeye(size(A)))
displays
M=
1 -1 0
0 0 0
0 0 0
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Hence z3 = r,z9 = s,x; = s and we have

1 0
= =st1|+7r}{0
0 1
1 0
It follows that both | 1 | and | 0 | are eigenvectors corresponding to A = 3. Since r and s
0 1
1 0
are arbitrary it follows that | 1 | and | 0 | are a pair of linearly independent eigenvectors
0 1

corresponding to A = 3. (Alternatively, homsoln(A - 3*eye(size(A))) produces the same
eigenvectors.)

Warning: If a matrix has a k-times repeated eigenvalue, then it is possible that there will be fewer
than k corresponding linearly independent eigenvectors. Such matrices are called defective. In
a computing environment defective matrices may be difficult to recognize because of roundoff
error within computations.

In MarLAB type
help eig

The display gives a description of the eig command. We are concerned only with the following
features:

e eig(A) displays a vector containing the eigenvalues of square matrix A.
g

e [v,d] = eig(A) displays the eigenvectors of A as columns of matrix v and the diagonal
matrix d contains the corresponding eigenvalues.

We illustrate command eig in the following example.

Example 4. Enter matrix A = 1 into MATLAB . Command

T
oo
oo o

r = eig(A)
displays
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r =
2.0000
0.5000
3.0000
Command
[v,d] = eig(A)
displays
v = . 3 d =
0 0 0.4082 2.0000 0 0
1.0000 -.7071 0.4082 0 0.5000 0
0 L7071 -0.8165 0 0 3.0000

The columns of v are the eigenvectors of A corresponding to the eigenvalues in the diagonal
entries of the same numbered column of d. It is MATLAB ’s convention that the eigenvectors are
scaled (multiplied by a nonzero scalar) so that their norm is 1. Had we done the computations
by hand the matrix v could have been displayed as

0 0 1
1 -1 1
0 1 -2

Warning: MATLAB computes eigenvalues and eigenvectors by methods different from those we
have studied. The results are quite accurate, but may appear different from the corresponding
hand calculations.

Exercises 13.2

1. Use commands poly and roots to find the characteristic polynomial and the eigenvalues
of each of the following matrices. Record your results below each matrix.

4 -2 -5 —6 8 1
a)A=|1 1 -1 b)B=| -4 6 1
0 0 -1 001
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2.

3.

LAB 13
1200
-1/2 1 —1/2 510 0
)C=|-1/2 1 —-1/2 D=, o | ]
00 1 0011

Here we investigate the eigenvalues of upper triangular matrices. Perform the following
experiments. Record the matrix A and its eigenvalues. Look for a connection between
the entries of A and its eigenvalues.

n = 3; A = triu(fix(10*rand(n))), r = roots(poly(A))

Repeat the experiment several times. Then change n to 4 and do the cxperiment. Com-
plete the following conjecture:

The eigenvalues of an upper triangular matrix are

Check your conjecture by changing n to 5 and repeat the experiment several times.

In the MATLAB commands in Exercise 2, replace triu by tril and investigate the eigenvalues
of a lower triangular matrix. Look for a connection between the entries of A and its
eigenvalues. Complete the following conjecture:

The eigenvalues of a lower triangular matrix are

Using the results from Exercises 2 and 3 fill in the following conjecture.

The eigenvalues of a diagonal matrix are

Give a reason for this conjecture based on ideas relating triangular and diagonal matrices.
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5. Find the cigenvalues and eigenvectors for each of the following. Record your results below
each matrix.

3 0 -1 0 1 0
ayA=|-1 -6 9 b) B = 0 -1 0
-1 0 3 -2 -2 -1
6. Let A = __(1) (1) . Find the eigenvalues of A. (The eigenvalues will be complex even
though the matrix A is real.) Find the eigenvectors as in Example 2. Record your results

below.

3-2 -1-2i O
7. Find the eigenvalues and eigenvectors of complex matrix A = 0 4 0
-2+ 614 5 241
using the methods in Examples 1 and 2. Record your results below. (Note that A has
complex eigenvalues, but its eigenvectors are real.)

8. Use eig on the matrices in Exercise 1. Check the eigenvalues with those you computed
using poly and roots.

LAB 13



28 ’ LAB 13

9. Use eig on the matrices in Exercise 5. Check your results from Exercise 5.

10. Do Exercise 7 using eig.

Section 13.3

Further Experiments and Applications

Following are a collection of experiments on eigenvalues and eigenvectors that provide oppor-
tunities to study properties of these concepts. We also provide an introduction to diagonalizable
matrices using MATLAB experiments. Applications involving powers of a matrix, Markov matri-
ces, and graph theory are explored briefly.

L
Exercises 13.3
-1 0 -1 13
12 1 1 -13 . 2 3
1. Let A = 00 4 —10| Compute the eigenvalues of A, A% and A°. Record
-5 0 -1 7

your results below.
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By inspecting the results above, complete the following conjectures.

The eigenvalues of A? are the of the eigenvalues of A.

The eigenvalues of A% are the of the eigenvalues of A.

Check to see if the pattern of your conjectures above continues by computing the eigen-
values of A% and A°. Change the matrix A and repeat this series of experiments.

Complete the following conjecture:

If X is an eigenvalue of A, then : is an eigenvalue of A¥.
8 0 11
2. Let A= 55 1.8 10.3 |. Compute and record the eigenvalues of A.
-55 0 -85

Perform and record the results of the following calculations.

Find the eigenvalues of A+31
Find the eigenvalues of A— I
Find the eigenvalues of A+2T

Formulate a conjecture concerning the relationship between the eigenvalues of A and those
of A 4+ kI by completing the following.

If A is an eigenvalue of A, then is an cigenvalue of A 4 k1.

3. If A is n x n and has n linearly independent eigenvectors which are used to form matrix
P, then ‘

P'AP=D
where D is a diagonal matrix. The diagonal entries of D are the eigenvalues corresponding
to the eigenvectors which are the columns of P. Matrix A is called diagonalizable or we

say that A is similar to a diagonal matrix. For such matrices A we have

A=PDP!

LAB 13



30

LAB 13

The powers of A are easily expressed in terms of the powers of the diagonal matrix D as
follows:

A? = (PDPY) (PDP ') = PDP'PDP~! = PDIDP™! = PD?P~!
A® = AA? = (PDP Y)(PD?*P 1) = PD3P!
and in general A* = PpD*p-1

Next note that for diagonal matrix

d 0 0 -+ 0
0 d 0 --- 0
D=
0 0 0 dn
it follows that
(d)* 0 0 0
0 (d2)* © 0
Dk = .
0 0 0 (dn)*

Hence in MATLAB we can compute A* much more economically than by repeated multi-
plication as A * A x A x-.-x A, Consider the following strategy.

o Find the eigenvalues and eigenvectors of A using command [P,D] = eig(A).
e Find P! using the inv command; Pinv = inv(P);.

¢ Set s = diag(D). Then vector s contains the eigenvalues of A. Next raise each
eigenvalue to the kth power using sk = s.”k with the desired value of .

e Compute A* using P * diag(sk) * Pinv.

e Summary: These steps can be combined into the single MATLAB command line

[P,D] = eig(A); Q = P = (diag(diag(D)."k)) * inv(P)

Replace k by the desired value and then matrix Q is A.

To compare the work involved in computing A* directly by repeated multiplication and by
the eigenmethod as outlined above for a symmetric matrix use the following experiment.
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(Here flops is a command that counts the number of arithmetic operations used. For
more information type help flops).

n = 8;A = rand(n); (setting matrix size and generating a matrix)
A = triu(A)+triu(A,1); (constructing a symmetric matrix)
flops(0); (setting flop count to zero)
k = 20;B = A"k; (setting power and doing direct computation)
df = flops {displaying flop count for direct computation)
flops(0); (resetting flop count to zero)

[P,D] = eig(A);

C = P*(diag(diag(D)."k))*inv(P);

idf = flops (displaying flop count for indirect method)
A measure of the difference in the work involved is obtained by comparing the values of
df, the number of flops for direct computation, and idf, the number of flops for indirect
computation.

a) Repeat the experiment for a 15 x 15 matrix raised to the 20th power. (n = 15 and
k = 20)

df = idf =

b) Repeat the experiment for a 25 x 25 matrix raised to the 25th power.

df = idf =

c) Repeat the experiment for a 25 x 25 matrix raised to the 50th power.

df = idf =

4. A wide variety of applications depend upon the behavior of the powers of a square matrix
A. For instance, the long term behavior of the population model that we studied in Lab
3 required us to predict future populations using computations like

Az, A%z, A%z, ...
where = represents an initial population. The long term behavior of this model really
depends on
lim AF.
k—oc

If A is similar to a diagonal matrix then A = PDP~! and it follows that
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lim A* = lim (PDP ¥ = P(lim D*) P
k—oo k—oc k—oo
Since
(d o o0 ... 0
0 (d2)* 0 ... 0
DF = . . . .
0 0 - 0 (d)F
limg_y00 D* depends on the Hmp_ oo dj’ for j = 1,2,...,n. That is, we merely investigate
the behavior of the powers of the eigenvalues of A. Hence the behavior of the sequence
Ax, A%z, A%z, ... is determined by the behavior of the sequences of powers of the eigen-

values of A. We simplify the analysis even further as follows. Let

r = {max | A |}

where ) is an eigenvalue of A. Then the behavior of sequence Az, A%z, A%z, ... for any
initial vector x is determined by the behavior of :

lim r*.

k—o0

‘We have three cases:

e If r < 1, then limy_,0c A®*Z = 0 and we say that the sequence Az, A%z, A3z, ...
is stable.

o If r =1, then limg_,00 A¥T = u where u # 0 and we say that the sequence
Az, A%z, A3z, ... is neutrally stable!. Alternatively, we say the process has a
nontrivial steady state.

o If r > 1, then limg_,o0 A*®2 does not exist and we say that the sequence Az,
A%z, A%z, ... is unstable.

We assume that the only eigenvalue with magnitude one is A = 1, which is the case for most population
matrices.
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a) If sequence Az, A%z, A3z, ... represents populations from year to year, then write a
brief description about the population behavior for each of the following cases:

stable

neutrally stable

unstable

b) For each of the following population transition matrices A determine if the process
defined by the sequence Az, A’z, A3z, ... is stable, neutrally stable, or unstable.

Record your findings next to matrix.

559 6 .1
i) A= 70 0
0 3 0
21 .64 12
i)A=1].69 0 O
0 36 0
868 4 .2
iii) A = 3 0 0
0 2 0
544 .06
c) For the population transition matrix A= | 1 0 0 [ it was determined directly
0 1 0
14
that for initial population vector = | 20 | (in millions) that
11
15.8077
Jim Afx = u = | 15.8077
15.8077

How is u related to the eigenvectors of A7 Be specific.
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5.

6.

A Markov matrix M has each m;; > 0 and the sum of each column equal to 1. For a
given matrix M we can inspect its entries to determine if they are nonnegative and MATLAB
can be used to compute the sum of the columns. Type help sum for a description of the
behavior of command sum(M).

1 3 4 2 2 6
Mi=|5 2 4 M2=|5 2 4
| 4 3 2 36 1
(5 1 6 4 [ 3 21 46 4
2 5 2 1 2 59 24 .1
M3=1 1 3 o0 1| Mi=|3 5 19 1
21 2 4 2 1 11 4

a) Use MATLAB to determine which of M1 through M4 is a Markov matrix.
(Indicate Yes or No.)

M1 00 M2 0 M3 ____ M4

b) For those that are Markov matrices use eig to determine r ={maz | X |} where X is
an eigenvalue. Record your results here.

c) Complete the following using the terminology of Exercise 4.

Any process using a Markov matrix is

Check your conjecture on a 4 x 4 Markov matrix that you construct.

d) For each of the Markov matrices of M 1 through M4 find the eigenvector corresponding
to r from part b. How are these eigenvectors related to your conjecture in part ¢? Be
specific.

Lab 3 investigated the populations of three age groups of an animal species that lived to
a maximum of two years, using the transition matrix
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559 6 .1
A= 7 00
0 3 0

The problem of determining the stable distribution for each age group can best be solved
using eigenvalues and eigenvectors.

a) What are the eigenvalues of A?

b) Determine an eigenvector v corresponding to eigenvalue A = 1.

c¢) Determine an eigenvector v corresponding to eigenvalue A = 1 that has positive
entries.

d) Determine an eigenvector v corresponding to eigenvalue A = 1 that has positive entries
and the sum of the cntries is equal to 1.

e) Usc the vector in part d) to determine the percentage of animal species that will even-
tually have

current age zero.

current age one.

current age two.

Graph theory is a valuable modeling tool. In graph theory a graph G provides a model
of set of objects and their relationships. The objects involved are represented as points
Py, Py, ... P, and their relationships are denoted by directed paths between points. The
points are called nodes or vertices and the paths are called edges. For example, if
the set of trade routes between four cities P, P2, P3, and Py are represented by Figure
1 where each edge can be traversed in either direction. Next we define the incidence
matrix A of such a graph by

aor — 1, if there is a route between P; and P, i # j
* 0, otherwisc

For the graph in Figure 1, the adjacency matrix is
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Py
P, Py
Py
Figure 1

0111
1 010
A=17110 0
1 000

Note that A is symmetric. (For other applications incidence matrices are defined differ-
ently and need not be symmetric.)

a) By inspecting the graph, rank each city in the trade route network by its accessibility
to the others. The highest rank to the most accessible. Use 5 for the highest with
cities of equal accessibility assigned the same value.

City P,
City P»
City P
City P4

b) Compute the eigenvalues of A. Record the results here.

c) Compute the eigenvector v corresponding to the largest eigenvalue and define
u = v/norm(v). Record u here.
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d) Consider the components of u as a measure of the accessibility of cities 1, 2, 3,
and 4 respectively. Do these agree, in principal, with your ranking in part a)? Explain.

8. Repeat the analysis outlined in Exercise 7 on the graph in Figure 2.

Py

Py

P

Figure 2

<< NOTES; COMMENTS; IDEAS >>
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Introduction to Graph
Theory

{5 q

Description: We introduce the notion of a graph to represent information.
This information is then presented mathematically using the no-
tion of an incidence matrix. We develop the computations for
determining the number of paths of various lengths connecting
nodes of the graph. Digraphs are discussed in the exercises.

Prerequisites: matrix sums, products, and powers; symmetric matrices.
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lIncidence Matrices]

By a graph we mean a set of points some of which are connected by line segments. The
points are often called nodes or vertices and the line segments are called edges. Each of the
following figures is a graph.

Figure 1 Figure 2

The nodes are usually labeled as P1, P2, ... and for now we allow an edge to be traversed in
either direction. See Figure 3.

P3

P4
P1 P2

rs
Figure 3

Graphs are becoming increasingly important to represent information. Certainly transporta-
tion networks by rail, road, or air have a natural representation as a graph. But so do telephone
and information networks, designs for electric circuitry, the study of social structures, analysis
of ancient trade routes, molecular models, and an ever increasing number of other topics.

One way to represent a graph mathematically is by an incidence matrix A. Each row and
corresponding column of the incidence matrix A is associated with a node. A natural way to
assign the nodes is to associate row j and column j with node Pj. Then the incidence matrix is
given entries as follows: ‘

4 — 0, if there is no edge connecting Pi and Pj
*» 71 1, if there is an edge connecting Pi and Pj

We illustrate this in examples.
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P2

P1 P4

P3

Figure 4

Example 1. Supposc we label Figure 1 and rename it Figure 4 as shown.
The incidence matrix associated with the graph in Figure 4 is constructed as follows.

Pl |P2 |P3 | P4

P1
A=|DP2
P3
P4

where

a1 = 0 since there is no edge from P1 to P1.
a2 = 1 since therc is an edge from P1 to P2.
Note also that ag; = 1 since the edge from P1 to P2 can be traversed from P2 to P1.
a14 = 0 since there is no edge from P1 to P4. Similarly, aq; = 0.
etc.

Verify that the full incidence matrix A for Figure 4 is

01180
1 011
A_1100
0100

Note that matrix A is symmetric; that is, AT = A. This follows since an edge can be traversed
in either direction. (If we permit ‘one-way’ edges the incidence matrix need not be symmetric.
See Exercises 3 to 7.)
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Example 2. In Figure 4 suppose that a new edge is inserted from P4 to P3. Then the graph is
P2

P1

P3
Figure 5

Construct the incidence matrix for this graph in the space below and name it B.

- -

To check your incidence matrix B we can have MATLAB draw the graph associated with B. Enter
B into MATLAB and then enter command

igraph(B)

Does the dispiay look like Figure 57 Write a short comparison in the space below. (Warning: It
may be oriented differently.)

By hand draw the graph associated with incidence matrix

0100

C = Put your graph here —

OO =
o= O
= O
[

Check your graph using routine igraph in MATLAB . (For more information on routine igraph
type help igraph.)
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In a variety of applications the graph representing the information under consideration is used
to determine a ‘connection’ or interrclationship between the nodes. The graph itself provides
a visual picture of which pairs of nodes are connected by single edges and this information is
directly reflected in the incidence matrix. Not every node is connected to every other node by
an edge, so to make a connection between some nodes we must traverse more than one edge.
It is convenient to use the term path to represent a connection between nodes and we can talk
about paths of various lengths. (Here length just refers to the number of edges traversed.) We
use the following conventions:

A path of length 1 traverses a single edge.

A path of length 2 traverses a pair of edges.
Note: if there is a path of length 1 from
P1 to P2, then there is a path of length 2 from
P1 to P1 by using the route P1 to P2 to P1.

A path of length 3 traverses three edges.

etc.

In Figure 5 we have the following examples of paths:

There is a path of length 1 from P1 to P2.
There is a path of length 2 from P1 to P3;
use route P1 to 2 to P3.
There are two paths of length 2 from P1 to P1;
P1 to P2 to P1 and P1 to P3 to P1.

To set up a delivery schedule for a transportation network it is important to know how many
paths of various lengths go from one node to another. This is also true for many other situations
modeled by graphs. For instance, in Figure 5 count the number of paths of length 3 from P4 to
P1. Careful inspection shows there are two:

P4 to P2 to P3 to P1
P4 to P3 to P2 to P1

Such counting by inspection is risky and very prone to error. To illustrate, try counting the
paths of length 3 from P1 to P3 in Figure 5. There are five. One is P1 to P2 to P4 to P3;
another is P1 to P3 to P4 to P3; another is P1 to P2 to P1 to P3. Find the other two and list
them below.

For efficiency and accuracy we need a mechanism for counting the number of paths of a
given length between pairs of nodes that does not rely on mere observation. This is where
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P2

AN
N

Ps

Figure 6

matrix operations can be used efficiently on an incidence matrix. We illustrate the case of paths
of length 2 from P1 to P5 in Figure 6, whose incidence matrix E is displayed below it.

01011
10101
E=]01011
10101
11110

A path of length 2 from P1 to P5 must travel through another node Pj. Hence we must have a
route of the form

P1 to Pj to P5

We first find the number of paths of length 1 from P1 to Pj for j = 1,2,3,4,5. These are re-
spectively the entries in row; (E); namely [ 01011 ] Next we find the number of paths

of length 1 from Pj to P5. These are respectively the entries in cols(E); namely . We

= e

0

combine this information to count paths from P1 to Pj to P5 as follows: (We use symbol # to
represent the word “number”.)

Case j=1:

# of paths from [ # of paths from # of paths from
PltoPltoP5 |\ PltoPl P1 to P5

)=(a11*a15)=0*1:0

Case j=2:

# of paths from # of paths from . # of paths from
PltoP2toP5 |\ PltoP2 P2 to P5

):(a12*025):l*1=1
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Case j =3

# of paths from ( # of paths from ) . ( # of paths from

Pl to P3 to P5 P1 to P3 P3to P5 ) ={ajz*xasz)=0x1=0

Case j =4:

# of paths from # of paths from . # of paths from
PltoP4toP5 P1 to P4 P4 to P5

):(a14*a45)=1*1=1
Casc j=5:

# of paths from # of paths from . # of paths from
PltoP5to P5 Pl to I’5 P5 w0 P5

) = (a15*(1,55) =1%0=0
The total number of paths of length 2 from P1 to P5 is the sum of the preceding quantities:
@11 * Q15 + a2 ¥ ags + 213 ¥ 35 + G14 * Q45 + Q15 * Ar5 = Z?Zl aij * ajs = row) (E) « cols(E) = 2

This computation generalizes in a natural way so that

# of paths of length 2 from Pi to Pj = row;(E)*col;(E)

But row-times-column is how we compute a matrix product. Hence it follows that the entries of
E? give the number of paths of length 2 between pairs of nodes:

(Ez)ij == # of paths of length 2 from Pi to Pj

For the graph in Figure 6

3131 2
1313 2
E*=13 131 2
13132
2 2 2 2 4

Thus (E2)24 = 3 implies that there are 3 paths of length 2 from P2 to P4.

We summarize the preceding development and extend it to paths of arbitrary length by the
following statement.

If A is an incidence matrix of a graph,
then the number of paths of length k from
Pi to Pj is the (i,j)-entry of A*.
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With the characterization of the number of paths of length k belween nodes in terms of
the entries of the incidence matrix raised to the k-th power, we have a mechanism for checking
effects of adding or deleting paths from the graph. For example, if the edge from P4 to P5 is
deleted from Figure 6 we.have Figure 7, whose incidence matrix is F.

P2

A
le )

P5

Figure 7

!

I
—_ O e O
= e O
—_ S e O
[ -
QO p= e e

00

Determine the number of paths of length 2 from P1 to P5. Record your result.

Certain applications require that we know the longest path required between any pair of
nodes in the graph. The entries of the incidence matrix A give the number of paths of length 1
between nodes, while the entries of A? give the number of paths of length 2 between nodes. It
follows that the (i,j)-entry of A + AZ? is the number of paths of length 2 or less from Pi to Pj.
Similarly the (i,j)-entry of A+ A2 + A is the number of paths of length 3 or less from Pi to Dj.
To determine the longest path required between any pair of nodes in the graph whose incidence
matrix is A, find the smallest value of & so that

A+ A%+ + AF

has all non-diagonal entries different from zero. This value & is the length of the longest path
required between nodes in the graph. Show that k = 2 for the graph in Figure 7.

What is the value of k for the graph in Figure 87
P2

P1 P3

P4
Figure 8
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Exercises
1. Consider the graph in Figure 9.
P1
P5 P2
P4 P3
Figure 9

a) Construct the incidence matrix A for the graph in Figure 9.

o -

b) Determine the number of paths of length 3 from P2 to P5. Explicitly write out the
paths.

c) Determine the number of paths of length 3 or less from P2 to P5.
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d) Use routine igraph to view a different configuration for the graph in Figure 9. Carefully
inspect that there is a one-to-one correspondence between the nodes and the edges in
Figure 9 and that displayed by igraph. You can use this as a check that your incidence
matrix is correct. Sketch the two graphs below and indicate the correspondence by
drawing arrows between nodes and marking like edges.

2; A telecommunications network ! conncets any pair of users by means of communication
links. In Figure 10 subscribers are denoted S1 through S6; local exchanges are denoted
L1 through L3; group switching centers are denoted G1 through G3.

G2
S5
L1 Gl
51
/ L3
52 L2 G3 S6
53
S4
Figure 10

The incidence matrix A for this network is constructed in the standard way: the (i,j)-entry
is 1 if there is a direct communication connection between node i and node j, otherwise it
is zero. Note that there is no direct connection between subscribers, none between local
exchanges, and none between subscribers and group switching centers. Hence the blocks
of zeros in the incidence matrix. Construct the remainder of the incidence matrix by
filling in its entries and then enter it into MATLAB . (Matrix A is 12 x 12.)

!The network depicted here is commonly called a network ‘in the large’ because within each swilching center
and local exchange is another internal network which is much more complex.
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S1 82 S3 S4 S5 S6 L1 L2 L3 G1 G2 G3
St) 0 0 0 0 0 O o 0 0
s2y 0 0 0 O 0 O 0 0 0
S31 6 o0 0 0 0O O 0 0 O
S4y 0 0 O O O O 0 0 O
S5/ 0 0 0 O 0 O 0o 0 0
A= S, 0 0 0 0O O O o 0 0
L 0 0 O
L2 0 0 0
L3 60 0 0
Gi1, 0 0 0 O 0 O
G210 0 0 O 0 0
G3;] o 0 0 0 0 0

a) Without computing A?, describe the set of subscribers that are connccted? by a path
of length 2.

b) Verify that there are no paths of length 3 between any two subscribers. Explain why.

¢) What is the longest path required so that any subscriber Si can connect with any other
subscriber Sj?

2The entries of the powers of the incidence matrix count the number of paths between nodes in the network.
But not all of those paths are physically meaningful for communication. For example, the path of length 4 from
S1 to S2 that is given by S1 to L1 to G1 to L1 to S2 traverses the link from L1 to G1 twice and is called a
"re-entrant path’. There are important questions in communication networks about the number of distinct paths
and the number of non-re-entrant. path. This area is known as connectivity in graph theory.

PROJECT 1



12 PROJECT 1

d) Which group exchange could be removed and not affect communication services? Ex-
plain your choice.

e) Discuss the ‘weak points’ of this network. That is, those nodes which if rendered in-
operable prevent completion of subscriber calls.

3. A digraph is a graph whose edges are dirccted. That is, edges may be one-way paths
between nodes. At this time we will also permit nodes to be connected by more than one
edge. See Figures 11 and 12,

P2 P3 b2

P1

P1 P4

Figure 11 P4

Figure 12

~ In Figure 11 the edge connecting P1 and P4 is two way since no direction arrow appears on
it. In Figure 12 there are two edges connecting P'1 to P2 and there is a ‘loop’ connecting
P5 to P5.

With each digraph we associate an incidence matrix A where
a;; = the number of edges connecting Pi to Pj

The entries are not restricted to be just 0 or 1 and a;j need not be zero since loops are
permitted. In fact the (5,5)-entry of the incidence matrix for Figure 12 is 2 since the loop
is not directed.
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a) Constrict the incidence matrix A for the graph in Figure 11.

c) Determine the length of the longest path required between any two nodes for the graph
in Figure 11.

d) Determine the length of the longest path required between any two nodes for the graph
in Figure 12.
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4. Let A = be the incidence matrix of a digraph.

- OO
oS =N
—_ O = O
[

a) Construct the digraph. (Note: routine igraph will not draw digraphs.) Display it
below.

b) Find the number of paths of length 2 from P1 to P4.

c) Determine the length of the longest path required between any two nodes.

5. The VAN service provides onc-way transportation or two-way transportation betwcen the
‘retail outlets’ labeled P1 to P6 in Figure 13.

P2 P3

A 4

P1
P4

P5
P6

Figure 13

a) Construct the incidence matrix A associated with the graph in Figure 13.
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L

b) Determine the number of paths of length 3 from P2 to P5. List them explicitly.

¢) What is the length of the shortest path from P3 to P27

d) Determine a path from P3 to P2 that goes through P1.

e) What new nondirect route could be added to improve the service from P3 to P17
Explain your choice.

6. A dominance-directed graph is a digraph with no loops and with at most one path of
length 1 either from Pi to Pj or from Pj to Pi, but not both, for i # j.

a) What are the diagonal elements of an incidence matrix associated with a dominance
directed graph?
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b) Can the incidence matrix of a dominance-directed graph have two-way paths?

Explain.

—_ o o

1
¢) The matrix A = 0 is an incidence matrix of a dominance-directed graph.

YR =Y—

0
1
0
0 01
Construct the graph below.

7. A simple situation that can be modeled by a dominance-directed graph is a round-robin
tournament in which each team plays every other team exactly once. There is a path
from Pi to Pj if team i beats (dominates) team j. Let the graph in Figure 14 represent a
round-robin tournament among four softball teams.

P1 > P2

P3

P4
Figure 14

a) Construct the incidence matrix A for the graph in Figure 14.

- -

b) A node Pj is called powerful in a dominance-directed graph provided there is a path
of length 1 or length 2 from Pj to every other node. This implies that either team j
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beats every other team or beats a team that has defeated a team that team j did not
defeat. Which, if any, are the powerful teams in the graph in Figure 147

¢) The power of a node Pj is the number of paths of length 1 or 2 from Pj to all other
nodes. Compute the power of each node for the graph in Figure 14.

<< NOTES; COMMENTS; IDEAS >>
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Secret Codes

Description: An application of matrix concepts to encoding and decoding mes-
sages. Messages are handled alphabetically using modulo arith-
metic in MATLAB .

Prerequisites: matrix multiplication; matrix inverse.
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CYEY-JPD is a message in a kind of foreign language — not a typical language, but a code
instcad. The goal is to decode this message.

The word ‘cryptography’ refers to the encoding of messages and the deciphering of codes. One
of the easiest ways to encode a message is to identify each letter with the number of its position
in the alphabet, shown here with the number below each letter and with the number 0 for a dash.

—_
o O3
w O

D
4

en =@

F G H I J K L
6 7 8 9 10 11 12

M N O P Q R S T U VW X Y Z
13 14 15 16 17 18 19 20 21 22 23 24 25 26

In this scheme the message ATTACK is written 1 20 20 1 3 11 .

Such a method of encoding is too easy to decode. On the other hand, matrices supply
the perfect structure for holding numbers in place, and matrix multiplication provides an easy
method for encoding messages. We will show how matrices and their inverses are used in
cryptography.

Encoding a Message

The first example will use columns with two entries. The method for encoding a message
begins with an encoding matrix E. Here let

5 8
FE =
[ 8 13 ]
Enter matrix E into MATLAB . The matrix corresponding to the message ATTACK is

[ 120 20 1 3 11 ] We will call this the input message, and denote it by the name
inmess. In MATLAB type

inmess:[l 20 20 1 3 11]

Convert this 1 x 6 matrix to a 2 x 3 matrix M, called the message matrix, by typing the
command

M = reshape(inmess,2,3)
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Verify that the message matrix for ATTACK is

1 20 3
M_[ZO 1 11}

The method for encoding a message is to form the product of the encoding matrix E and the
message matrix M, so type
A=FExM

Verify that

4 | 165 108 103
| 268 173 167

The entries in matrix A cause a slight problem because they are not integers between (0 and
26. The method for determining the corresponding letters is to divide 27 into each entry and
form the remainder.! For instance, for the first entry 165 the remainder when divided by 27 is
3 s0 165 corresponds to the letter C. The command in MATLAB that performs this arithmetical
drudgery for you is modn. Type

C = modn(A,27)

This is called the code-matrix. Verify that

3 0 22
C=[25 11 5}

The reshape command converts C to the output message, which we name outmess. Type
outmess = reshape(C,1,6)

The resulting matrix is [ 3 25 0 11 22 5 ] By interpreting each number as a letter we

sec that the code for ATTACK is CY-KVE. Notice that two different letters represent A and
two different symbols represent T. Thus this method negates a statistical analysis that relies on
the frequency of occurrence of certain letters.

1Technically this is a representation using modulo 27 arithmetic. The number 27 accounts for the 26 letters
and a dash
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Method for encoding a message with m characters.
1. Enter an n X n encoding matrix E.

2. Let inmess be the row matrix of numbers corresponding to the m letters of the
message. Inscrt dashes for spaces. If needed, add enough dashes to the message
so that its new length k is evenly divisible by n.

3. Form the message matrix M = reshape(inmess,n,k/n) using numerical values
for k and n.

4, Compute A = ExM.
5. Convert matrix A to the code matrix using command C = modn(A,27).

6. Let outmess = reshape(C,1,k) and interpret its entries as letters.

E)eco ding a Message

Now we are rcady to decipher (literally meaning ‘from the numbers’) the code CYEY-JPD
that began this unit. First, enter the output message by typing

outmess =3 25 5 25 0 10 16 4 |

The code matrix C must have two rows because F is a 2 X 2 matrix. Since outmess has 8
entries, C' must have 4 columns because 8/2 = 4. Form C by typing

C = reshape(outmess,2,4)

Verify that

3 5 0 16
C_l25 25 10 4]

The goal is to find the message matrix M such that EM = C. The solution is to form
B = E7IC and then convert B to a matrix M whose entries are integers between 0 and 26.
Type '

B = invert(E)*C

Verify that

B =

—-161 —-135 —-80 176
101 8 50 -—-108
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What letter corresponds to —161? To find the letter you move backwards through the
alphabet (including the dash) 5 times to account for 135 letters. The letter that corresponds
to -161 is found by moving backwards 26 more letters. Therefore the letter is A. Once again,
MATLAB can perform this drudgery for you. Type

M = modn(B,27)

Verify that the message matrix is

The command
inmess = reshape(M,1,8)

produces a string of numbers that converts to the message AT-DAWN-. Notice that the first
letter, A, corresponds to the number —161.

Note the double use for the dash in the preceding message. The first dash is used as a word
separator; the second to complete the final column of M in the code, since otherwise the last
column of M would have had only one entry.

Method for decoding a message with m characters.
1. Enter an n x n encoding matrix E.

2. Let outmess be the row matrix of numbers corresponding to the m letters of
the code. Insert dashes for spaces. If needed, add enough dashes so that its new
length k is evenly divisible by n.

3. Form the code matrix using C = reshape(outmess,n,k/n) using numerical
values for k and n.

4. Compute B = invert(E)*C.
5. Convert B to the message matrix using M = modn(B,27).

6. Let inmess = reshape(M,1,k) and interpret its entries as letters.
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Exercises

"

5 8
8 13

between the two words. Record the letters of the coded message below the original letters.

1. Encode LINEAR ALGEBRA using the encoding matrix E = Put a dash

L 1T N E A R - A L G E B R A

2. Decode YPWBUMBO-ONQ using the same encoding matrix £ in Exercise 1. Record
your answer below.

3. Decode LKSSSOLFGWFEFXBSBX using the encoding matrix E = [ L1 ] . Record your

5 6
answer below,

The examples so far have made use of a 2 x 2 encoding matrix E. If E is a 3 x 3 matrix
then the columns of the message matrix M and the code matrix C must have 3 entries. As
before, use a dash to separate words and to fill out unused entries in M or C.

In Exercises 4 and 5 use encoding matrix E =

4. Encode LINEAR ALGEBRA and record your answer below.
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5. Decode PXHKUNAHOEFRMQU and record your answer below.

1 001

6. Use the encoding matrix E = 0110 to decode
0100}
1000

LQYSTMMEWE-FCUAUOFNO. Record your answer below.

7. Decode the message FRRBVQCYZMTAJAPB by finding the matrix E which was used
to encode the message. It is known that E satisfies the following properties:

1. Eis2 x 2.
2. Each entry of E is 1 or 2.

a b

3.IfE:[C d

}, then Jad - be| = 1.

Warning: there can be more than 1 matrix satisfying the conditions above. You
must find the one that meaningfully decodes your message.

Record the encoding matrix E.

Record the decoded message here.

8. A very simple way to encode a message is to reverse successive pairs of the letters. For
cxample, MATRIX is encoded as AMRTXI. What 2 x 2 matrix E encodes a message in
this way?
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2 -3 -5
9. Anew 3 x 3 codematrix E=1] 0 1 -1 | was received by the station code expert.
2 -1 -7
As she was using E to encode a message she noticed that
4 0 20 0
Ex{1]=]0 FE « 5| =10
1 0 5 0

Write a short paragraph below to explain why this is an unacceptable code matrix.

<< NOTES; COMMENTS; IDEAS >>
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Least Squares Models

Description: The least squarcs line model is developed both geometrically and

algebraically. Routine Isggame uses MaTLAB s graphics interface
to provide interactive experimentation in estimating a ‘line of
best fit’. Routine Isqline provides a tool for experimentation
with data scts and exploring line models. Examples based on
real data from Olvmpic events are used. The notion of a psendo
inverse provides a unifying theme for the development.

Prerequisites: matrix multiplication, transposes, and inverses; lincar systems;

linear independence; dot product; orthogonal vectors; column
space.
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An important usc for linear systems of equations is in the construction of mathematical
models for a set a data. The mathematical model is an expression that provides a relationship
between the coordinates of the data. The simplest instance is when the data consist of ordered
pairs (i;,3;) and there is a ‘linear’ relationship between x; and yi. That is, there is some line
y = mx + b which either goes through cach pair (z;,:) or comes close to all the pairs. If each
data pair lics on the same line then values for m and b can be determined from the solution of
a nonsingular lincar systen. If any data pair does not lie on the same line then an inconsistent
system arises in the model building process. We show how to develop a related nonsingular
system whose solution provides a ‘linear’ modcl that lies ¢lose to all the data. The model we
develop is called the least squares line model.

Scction 1 provides a geometric setting for least squarcs line model using MATLAB ’s graphical
user interface. The routine Isqgame actively engages the student in experiments to build linear
models. Students can compete against one another and the routine has an option to select data
sets using a mouse. This scction can be used independently from the other sections and requires
very few linear algebra topies.

Section 2 develops least squares line models using matrix algebra aund the notion of projec-
tions. Projection properties arc introduced informally and we do not assume that Lab 10 has
been covered. The pscudo inverse is introduced and provides a unifying theme for other types
of models devcloped later. We use MATLAB ’s graphics in routine Isqline to provide visnalization
of the linc models.

This Project contains both geometric and algebraic approaches to least squares model build-
ing. There is also a wide variety of exercises using data of various types. We have used these
materials with lab groups and as individual lab projects for students. There arc plenty of ideas
and materials to provide a flexible approach to the study of and experimentation with least
squares.

Section 1.

Geometric Experimentation with Linear Models

A primary focus has been linear systems of equations. Consistent linear systems provide an
important modeling tool for a variety of applications. The solution set of a linear system provides
us with values for the unknowns that ezactly satisfy each equation. For instance, suppose that
we have collected data from a process by supplying values for an input parameter and recording
values of an output, or response. We use the data in Table 1.
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z — input y — output
2.1 4.9200

3.2 8.4400

-2.7 ~10.4400

4.2 11.6400

0.53 -0.1040

Tablel.

If we suspect that there is a linear relationship between x and y this implies that there exist

values m and b so that

y=mz+b

for each input-output pair (,y) in Table 1. Substitute the data pairs from Table 1 into the
preceding equation model to develop a system of equations to solve for m and b. We get

21«m + b = 4.9200
32+m + b = 8.4400
-27xm + b = -10.4400
42xm + b = 11.6400
053+m + b = —0.1040
In matrix form we have

21 1 4.9200
32 1 8.4400
-2.7 1 [ b ] — | —10.4400
42 1 11.6400
053 1 —0.1040

Forming the augmented matrix of this system and computing the rref we get

21 1 4.9200 10

32 1 8.4400 01

rref -2.7 1 -10.4400 =100
42 1 11.6400 0 0

053 1 —0.1040 00

which implies that the data is ‘exactly’ modeled by y = 3.2z — 1.8. We say that this line ‘fits

3.2
-1.8
0

0

0

the data’. Geometrically we interpret this to say that the five data pairs are collinear.

Suppose that our instruments to measure the response y had a small malfunction and we
could only obtain output information as whole number values. Table 2 contains this data where

we represent the response by the unknown z.
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z — input z — output
21 4

3.2 8

—-2.9 -10

4.2 11

0.53 0

Following the model building procedure above we get linear system

Table 2.

21 1 4
32 1 8
27 1 [;”J =] ~10
42 1 11
053 1 0

Forming the augmented matrix of this system and computing the rref we get

2.1

3.2

rref —2.7
4.2

0.53

1 4 1 0
1 8 0 1
1 -10 =00
1 11 0 0
1 0 0 0

Q= OO

0

It follows that this system is inconsistent; that is, there is no line that gocs through all the data
pairs (z,z) from Table 2. However, at least intuitively, we feel there is some line that should
come ‘close’ to all these points. To determine the closcst line to the data in Table 2 we must
somehow use the inconsistent system developed above. Since the system is inconsistent we can
not expect to satisfy each of the five equations exactly, hence we need to change our point of
view from ‘equality’ to ‘approximately equal’.

The key to finding the line closest to the data set is to proceed both geometrically and
algebraically as we illustrate next. In Figures 1 and 2 the same data set is displayed together
with a line that is closc to all the data. (It is an optical illusion that the data sets appear
different.) By observation we see that no line can go through all the points. But which of the
lines in Figures 1 and 2 is ‘closer’ to all the points?
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Figure 1. Figure 2,

To measure ‘closeness’ we compute the vertical distance from each point to the line chosen to be
the model, Then we take the sum of the squares of these deviations as our measure of closeness.
(Section 2 develops this procedurc in detail.) The line for which the sum of the squares of the
(vertical) deviations is a minimnm is called the Least Squares Line for the data set. Figure
3 shows the least squares linc and the deviations for the data set used in Figures 1 and 2.

Figure 3.

The equation of the least squares line shown in Figure 3 is obtained from the solution of a
linear system that is ‘related’ to the inconsistent system that would result if we substituted each
data pair into equation y = ma + b. The solution procedure to determine m and b is developed
in Section 2.

Here we proceed geometrically to provide a feel for the least squares process. The routine
lsqgame lets you use a mouse to select a ‘line model’ for a data set. In this routine you click on
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the graphics display of the data set to sclect two points for a line. The routine shows the vertical
deviations, computes the sum of the squares of the deviations, and determines the equation of
the line through the points you selected. A second guess for the least squares line can be made
in order to try to reduce the sum of the squares of the deviations so you produce a line modecl
that is closer to the data set. One way to sharpen your estimation skills is to compete with a
classmate to see who gets the ‘better fit’ to the data. (Hence the designation lsqgame. For
instance, flip a coin to see who selects the data set or have a third neutral party select the data).
The data can be sclected by the mouse or through several other options; type help lsqgame
for more information. Next decide who makes the first estimate of the least squares line. The
better estimatc is the one with the smaller sum of the squarcs of the deviations. There is an
option to show the least squares line. To initiate the game type Isqgame, follow the on-screen
directions, aud click the appropriate buttons. Figure 4 shows a display from lsqgame with a
gness at the lcast squares line.

LSQ LINE GAME

| Select Line # 1 _l

| SelectLine#2 |

| Show LSQ Solution I

Line # 1: SUM of Squares of Deviations
30.24; y= 0.8826x + (0.6482)

Help Restart Quit

Redraw Graph

by D.R.Hill

Figure 4.
Example 1. To illustrate routine Isqgame we use the data from the men’s Olympic pole vault

event. For convenience we have stored this data in a file which can be loaded into MATLAB .
Enter the following command to load and display the data.
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load pvault
data = [x y]

The year is listed in the first column and the winning height (in inches) in the second column.
To develop a line to fit this data type lsqgame. After you select the number of players, 1 or 2,
choose option 2 at the Data Entry Menu. At the entry prompt type data and press ENTER.
Then follow the screen directions to generate your line to fit this data.

Record the equation of the least squares line approximation to the pole vault data on the
line below.

Click on the QUIT button to return to the MarLas prompt. Then usc this equation to predict
the winning pole vault height in inches for the 2012 Olympics. Show your work in the space
below.

The pole vault data are shown in Figure 5. In the space below write a short description of
how well you feel this data can be approximated by a single line. Be specific.

Figure 5.
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Example 2. Execute lsqgame choosing 1 or 2 players as appropriate. For DATA ENTRY choose
Option 1 to use thc mouse to select a data set. Follow the on-screen direciions. Note that to
quit selecting points press ¢ on the keyboard. Use the mouse to sclect a data set which resembles
that displayed in Figure 6. Choose as the final piece of data a point similar to the one designated
‘last’ in Figure 6.

5 KX
x X
K Ok x
*
* *
*
¥ Xk
*
*
Last
ES
Figure 6.

Construct your estimate of the least squares line to data set you generated. Record the sum of
squares of the deviations and the equation of your linc below.

Sum of squares of deviations: ____ Equation:

Have lsqgame compute the least squares line to your data set. Record the sum of squares of
the deviations and its equation below.

Sum of squares of deviations: __ Equation:

Sketch your data sef, your estimate of the least squares line, and the least squares line in the
box of Figure 7.
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Figure 7.

Click on the QUIT button. At the command screen prompt type dmat. You will see a table of
z and y values of the data set you created with the mouse. The ‘last’ data point is so diffcrent
from the others, the question that arises is, How does the least squares model change if we omit
that‘last’ point? To aid in the investigation of this question use the following commands to drop
the ‘last’ data point, and then recompute the models. (In the following commands m is the
number of data point you selected, and matrix newdata will contain the original set except for
the ‘last’ point.)

[m,n] = size(dmat)
newdata = dmat(1:m-1,:)

Start lsqgame, select the appropriate number of players, and choose option 2 for DATA EN-

TRY. At the data input prompt type newdata. Record the sum of squares of the deviations
and the equation of your line below.

Sum of squares of deviations: Equation:

Have lsqgame compute the least squares line to your data set. Record the sum of squares of
the deviations and its equation below.

Sum of squares of deviations: Equation:
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In the space below describe the effect of the ‘last’ point on the least squares line models gener-
ated above. (The point we designated as ‘last’ is called an outlier.)

Click on QUIT to return to the MATLAB prompt.

1.

2.

Exercises 1.

The cost of health care insurance in the United States for the years 1994 - 2001 in billions
of dollars is given in the following table. Crcate an 8 x 2 matrix hdata in MarLag with
the year in column 1 and the expenditure in column 2. Use lsqgame to estimate a least
squares fit for the data. Choose option 2 for input so that you can just type the name
hdata to create the data set.

year 1994 1995 1996 1997 1998 1999 2000 2001
Health Ins. Cost 55.8 580 56.6 59.3 63.6 657 706 75.0

Is this data well approximated by a straight line? Explain.

Use the least squares line equation to predict the expenditure in 2010. What assumption
is implicit in this calculation?

The Consumer Price Index (CPI) is a measure of the average change in prices over time
of selected goods and services. To establish a base for comparison the annual average of
monthly prices in the years 1982-84 have been used to generate data in the following table
of consumer price changes for tobacco products. The figures represent the percentage of
change from the base.

year 1970 1975 1980 1985 1990 1995 1999 2000 2001
Tobacco CPI  43.1 54.7 720 116.7 181.5 2257 355.8 3749 4252
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Is this data well approximated by a straight line? Explain.

Use the least squares line equation to predict the tobacco CPI in 2010. What assumption
is implicit in this calculation?

. Each year the U.S. government spends lots of your money on the national debt. The

following table shows the percent of government expenditures that goes towards paying
interest on the national debt for the years 1991-2002.

year 1991 1993 1995 1997 1999 2001 2002
% of govt. expend. 21.6 20.8 220 222 207 193 164

Is this data well approximated by a straight line? Explain.

Use the least squares line equation to predict the percent of federal outlays applied to the
national debt in 2010. What assumption is implicit in this calculation?

. The United States census is taken every ten ycars. The following table shows the census

figures from 1940 through 2000 in millions (rounded).

year 1940 1950 1960 1970 1980 1990 2000
US.population 132 151 179 203 227 249 281

Is this data well approximated by a straight line? Explain.

Usc the least squares line equation to estimate the U.S. population in 2010 and in 2020.

Use the least squares line equation to estimate the year when the U.S. population will
reach 320 million.

. The length in inches of the winning jumps in the men’s long jump for Olympic competition

is loaded using command longjump. Use help longjump for details. Use Isqgame to
estimate a least squares fit for this data. Discuss the possibility of an outlier in this data
set. Explain.
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Section 2.
The Linear Model

The women’s 100-meter dash was won in flamboyant style by Florence ‘Flo-Jo’ Griffith-
Joyner at the 1988 Olympics in Seoul, Korea. Her winning time was 10.54 seconds. We will
show how to predict the winning time for this running event in future Olympics based on the
winning times in all Olympics since the sprint was first contested.

The women’s 100-meter dash was first contested in the Olympics in 1928. It was won by
Elizabeth Robinson of the U.S. in a time of 12.2 seconds. The event has been contested at every
Olympic Games since then. Table 1 lists the gold medal winners and their times ! (in scconds.)

Year Gold Medal Winner Time
1928 Elizabeth Robinson, U.S. 12.2
1932 Stella Walsh, Poland 11.9
1936 Helen Stephens, U.S. 11.5
1948 Francina Blankers-Koen, Netherlands 11.9
1952 Marjorie Jackson, Australia 11.5
1956 Betty Cuthbert, Australia 11.5
1960 Wilma Rudolf, U.S. 11.0
1964 Wyomia Tyus, U.S. 11.4
1968 Wryomia Tyus, U.S. 11.0
1972 Renate Stecher, E. Germany 11.07
1976  Annegret Richter, W. Germany 11.08
1980 Lyudmila Kondratyeva, USSR 11.6
1984 Evelyn Ashford, U.S. 10.97
1988 Florence Griffith-Joyner, U.S. 10.54
1992  Gail Devers, U.S. - 10.82
1996 Gail Devers, U.S. 10.94
TABLE 1.

Table 1 shows that the winning times have been lowered regularly but not steadily (monoton-
ically). (One might argue that the slow time in 1980 was influenced more by politics than sports.)
To view the data graphically enter the years as a column matrix in MATLAB via the command

x = [1928 1932 1936 1948:4:1996)'

'The years 1940 and 1944 do not appear because no games were held during World War II. All Olympic
data were taken from The World Almanac and Book of Facts 2003, World Almanac Books, AWRC Media
Company 512 Seventh Avenue New York, NY 10018,
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Enter the winning times from Table 1 into MATLAB as a column matrix y. (There is no painless
way to do this.) Then type command

Isqline

From the input options choose 2, and follow the on-screen directions. When the graphics screen
appears you will sce the data plotted in (z, y)-pairs denoted by * and a line that, in some sense,
comes close to the data pairs. Click on the Show Data Table button; check that you entered the
data correctly. Follow the screen directions to return to the graphics screen. We will explain
the meaning of the line displayed and derive a method for computing its cquation.

Ideally we seek a lincar rclationship between the 16 by 1 matrices x (in years) and y (in
seconds). That is, we scek scalars ¢ and g such that

X+ =Yy

The equation below the graph reveals that ¢; = —0.017583 and ¢z = 45.8499. For now click on
the QUIT button to exit the routine lsqline.

The scalars ¢; and ¢y are derived by dealing with the system of 16 equations in two unknowns
displayed next:

1928¢cy + 2 =12.2
1932¢; + o =119
1936¢; + co = 11.5
1948¢; + co = 11.9
1952¢1 + ¢ = 11.5
1956¢1 + ¢o = 11.5
1960¢; + ¢2 = 11.0
1964¢1 +co =114
1968¢; + ¢ = 11.0
1972¢; + ¢o = 11.07
1976¢; + ¢o = 11.08
1980¢; + ¢c2 = 11.6
1984¢q + ¢ = 10.97
1988¢; + ¢c5 = 10.54
1992¢7 + ¢ = 10.82
1996¢y + ¢ = 10.94

(3.1)

Enter the coefficient matrix A of system (3.1) into MATLAB using the command

A = [x ones(size(x))]
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The augmented matrix of the linear system in Equation (3.1) is [A y]. Display its rref by using
MATLAB command

rref([A y])

Omitting any zero rows, record the rref of the augmented matrix in the space below.

Is the system consistent or inconsistent? (circle one)

consistent inconsistent

You should have observed that the system is inconsistent since the last nonzero row of the aug-
mented matrix had the form [0 0 | 1]. Thus there is no set of values for ¢; and ¢, which
satisfies all 16 equations simultaneously. Howcver, “In spite of their unsolvability, incon-
sistent equations arise in practice and have to be solved.” 2

We do not solve an unsolvable system, but instead settle for an approximate solution which
we judge to be ‘best’ in some sense. In this unit we show how to obtain an approximate solution
to an incongistent system that is ‘best in the least squares sense.’

Let u = [ ﬁl l Then the lincar system in Equation (3.1) has the matrix form
%2

Au=y (3.2)

Since this system is inconsistent, we know that vector ¥ is not in the column space of matrix A,
which is span{x, ones(size(x)}}. While the column space of A is a two dimensional subspace
of R'® and cannot be displayed geometrically, we intuitively use the corresponding situation in
R? to serve as motivation on how to proceed. The corresponding situation in R? is that we have
a plane P (a two dimensional subspace) and a vector y not in the plane as depicted in Figure 1.
Since ¥ is not in the plane P we cannot express it as a linear combination of vectors in a spanning
set (or basis) for P. Hence we try to find the vector z in P that is ‘closest’ to y. We then replace
y by z and solve the related system Aw = 2. The vector w is considered an approximate

2Gilbert Strang, Linear Algebra and Its Applications, Academic Press, 1976, p. 105; second edition,
1980, p. 111. In Introduction to Linear Algebra, Wellesley-Cambridge Press, 1993, Strang writes (p. 179),
“But these are real problems and they need an answer.”
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Figure 1

solution to the linear system Au = y. From an intuitive geometrical point of view we will find
2z by dropping a perpendicular from the tip of z to the plane P. See Figures 2 and 3. If we label
the perpendicular n as in Figure 3, then the vector in P that is closest to y is 2 = y — n.
Since the figures are in R, it is natural to expect that we can use algebra and trigonometry to
determine vectors n and z. A careful analysis shows that this development can be done using
matrix algebra and the notion of orthogonal vectors and the development can be immediately
generalized to R or in general RF .

Figure 2 Figure 3

Following is a step-by-step argument of how to convert the geometry displayed in Figure 3
into matrix algebra so that we can compute vector w explicitly from the coefficient matrix A
and right-hand side y in Equation (3.2). We let P denote the column space of A for ease in
referring to Figure 3.

e m is orthogonal to subspace P. Equivalently, n is orthogonal to every vector in subspace
P. (This fact is often called the projection property.)

e n is orthogonal to the spanning set of subspace P.

e n is orthogonal to each column of matrix A. (In our situation there are only two
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columns.)
e In terms of dot products, col; (A)-n = 0 and colz(A)n = 0.
o In terms of matrix products, colj(A)T*n = 0 and coly(A)T+n = 0.

¢ Using properties of matrix algebra we combine these two equations into the single matrix
equation

coly(A)T en—|0]_
colp(A)T o]
which is the same as the matrix equation AT x n = 0.

e From Figure 3 we see that 7 = y — z and since z is in subspacc P it is a linear combi-
nation of the columns of matrix A. Hence we can express vector z as z = A * w, where
w is a column of coefficients that express z as a linear combination of the columns of A.
Thus we have the matrix equation

ATxn=AT+(y—2) = ATx(y— Axw) =0 (3.3)

If we solve this matrix equation for w, then the vector ‘closest’ to ¥ in subspace P is
z=A*w.

e We call w the least squares approximation to the linear system Au = y in Equation
(3.2). (Warning: it is not generally true that Aw = y.)

Equation (3.3) is expanded as

ATy —ATAw =0
Rearranging the terms we have

ATAw = ATy (3.4)

which we solve for w. In fact, matrix AT A is square and if it is nonsingular (invertible) then
we have

w= (ATA)‘lATy (3.5)
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which we call the least squares approximation of the linear system Au = y.

. -1 . . . o o
The matrix (AT A)™ AT plays such an important role in a variety of situations we give it a
special name.

Definition: If A is an m X n matrix with linearly independent columns then
(ATA)—IAT is called the pseudo inverse (or gencralized inverse) of A.
It is denoted A™.

Thus the least squares approximation of Au = y is given by

w= Aty

It is important to realize that we are not ‘solving’ the inconsistent system
Au = y. Rather we replace the system Au =y with the system AT Aw =
ATy which is easy to solve if AT A is nonsingular. To perform computations
we need not repeat the arguments given above as to why this replacement
generates an approximate solution. Instead we just use the result of the
theoretical development. The linear system AT Aw = ATy is called the
normal system associated with the linear system Au = y.

In MATLAB the vector w in Equation (3.5) is obtained by typing the command

wlin = inv(A'* A) x A’ xy

We will store the solution in wlin rather than just w so that it can be referred to later in this
unit. Now in MATLAB compute the least squares approximation for the linear system in Equation
(3.1), which corresponds to determining a linear model for the women’s 100-meter dash. Show
the MarLAB commands and their output in the space below.

In the space below write the least squares approximation to the women’s 100-meter dash to
construct a single linear equation of the form y = ax + b that forms the linear geometric model
to the data in Table 1.

y=[_  Joe+[__|

Next check your work by re-entering command lsqline, choosing input option 2, entering
the names of the vectors containing the data, and inspecting the cquation below the graph. You
can see that the line does not go through all the ordered pairs of data from Table 1, but in
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somce sense it comes close to all the data points. In fact, this line is the line that is closest to
the 16 data points in the scnse that the sum of the squares of the distances from the points to
the line is minimized. (Thus we use the name least squares approximation.) Click on the
Deviations On button and then on the Sum of Squares of Deviations. The vertical deviations will
be displayed and the sum of the squares of the lengths of these line segments will be computed
and displayed. The value is a (crude) measure of error incurred in using the least squares line
as a model for this data.

Click on Evaluate the Model button and follow the on-screen directions. Set x = 2000 to
predict the winning time in the women’s 100-meter run for 2000. Record the value below.

Winning time predicted for 2000 by the Lincar Model:

In the space below explain how this winning time for 2000 was computed. Be precise.

How accurate is this prediction?

Marion Jones of the United States won the event at the 2000
Olympics at Sydney in a time of 10.75. Thus the prediction
of 10.68 (rounded to two decimal places) is off by only seven
one-hundredths of a second.

What is the prediction for the 2012 Olympics? Record the result below.
Winning time predicted for 2012 by the Linear Model:

This result is based on the data through 1996. Since we know the exact data for the 2000
Olympics, adjoin that information to the @ and y vectors and run lsqline again. Exercise 1
asks for the result of this computation. Quit lsqline.

Exercises 2.

1. The data for this exercise is from the women's 100-meter dash. It can be loaded using
command w100dash. Use help w100dash for details.
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a) What is the equation of the least squares line for the using all the data from 1928
through 2000? Record the equation in the space below.

b) Use the cquation in part a) to predict the winning time in the women’s 100-meter
dash in 2012. Record your result on the line below.

c) Use the equation in part a) to predict the winning time in the women’s 100-meter dash
in 2000. Record your result on the line below.

Does it match the exact winning time for 20007 Explain any difference in a short
paragraph in the space below.

2. Let A = [x ones(size(x))] where x = [ 1928 1932 1936 1948:4: 2000 ]

a) Use the command rref to determine which columns of A are linearly independent.
Write a short statement in the space below summarizing your findings.

b) Form the matrix A’*A. In the space below explain how to show that it is nonsingular.
Then verify your procedure.

Least squares models apply to many other Olympic events. Exercises 3 to 6 refer to a distance
run, a high jump, a swimming event, and a long jump.

3. Here are the winning times (in seconds) for the men’s 1500-meter run in the Olympics.
(The data for this exercise can be loaded using command m1500run. Use help m1500run
for details.)
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year time year time
1896 | 273.2 | 1956 | 221.2
1900 | 246 1960 | 215.6
1804 | 2454 | 1964 | 218.1
1908 | 2434 | 1968 | 214.9
1912 | 236.8 | 1972 | 216.3
1920 | 2418 1976 | 219.17
1924 | 233.6 | 1980 | 2184
1928 | 233.2 ] 1984 | 212,53
1932 1 231.2 7 1988 | 215.96
1936 | 227.8 | 1992 | 220.12
1948 | 2298 | 1996 | 215.78
1952 | 225.2 | 2000 | 212.07

a) What is the equation of the least squares line for the event for all years through 19967
Record your result below. (If you load the data with command m1500run delete the
last value in both @ and y for this part.)

b) Use the equation in part a) to predict the winning time in 2000 based on all Olympics
through 1996. Record your result on the line below.

c) What is the equation of the least squares line for the event for all years through 20007
Record your result below.

d) Use the equation in part ¢) to predict the winning time in 2012 based on all Olympics
through 2000. Record your result on the line below.

4. Here are the winning heights (in inches) for the men’s high jump in the Olympics. (The
data for this exercise can be loaded using command highjump. Use help highjump for
details.)
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year | height | year | height
1896 | 71.25 1956 | 83.5
1900 | 74.75 1960 | 85

1904 | 71 1964 | 85.75
1908 | 75 1968 | 88.25
1912 | 76 1972 | 87.75
1920 | 76.25 1976 | 885

1924 | 78 1980 | 92.75

1928 | 76.5 1984 | 92.5
1932 | 77.625 | 1988 | 93.5
1936 | 80 1992 | 92
1948 | 78 1996 | 94
1952 | 80.2 2000 { 925

a) What is the equation of the least squares line for the event for all years through 19967
Record your result below. (If you load the data with command highjump delete the
last value in both  and y for this part.)

b) Use the equation in part a) to predict the winning height in 2000 based on all Olympics
through 1996. Record your result on the linc below.

¢) What is the equation of the least squares line for the event for all years through 20007
Record your result below.

d) Use the equation in part c) to predict the winning height in 2012 based on all Olympics
through 2000. Record your result on the line below.

Here are the winning times (in seconds) for the women’s 100-meter freestyle swimming
competition in the Olympics. (The data for this exercise can be loaded using command
w100free. Use help w100free for details.)
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year | time | year | time
1912 1 822 | 1964 | 59.5
1920 | 736 | 1968 | 60
1924 | 724 | 1972 | 58.59
- 1928 | 71 1976 | 55.65
1932 1 66.8 | 1980 | 54.79
1936 | 65.9 | 1984 | 55.92
1948 | 66.3 | 1988 | 54.93
1952 | 68.8 | 1992 | 54.65
1956 | 62 1996 | 54.50
1960 | 61.2 | 2000 | 53.83

a) What is the equation of the least squares line for the event for all years through 19967
Record your result below. (If you load the data with command w100free delete the
last value in both @ and y for this part.)

b) Use the equation in part a) to predict the winning time in 2000 based on all Olympics
through 1996. Record your result on the line below.

¢) What is the equation of the least squares line for the event for all years through 20007
Record your result below,

d) Use the equation in part c) to predict the winning time in 2012 based on all Olympics
through 2000. Record your result on the line below.

. The men’s long jump raises an interesting issue because it contains one performance (by

Bob Beamon in 1968) that statisticians call an ‘outlier’. Here are the winning distances
(in inches) for the men’s long jump in the Olympics. (The data for this exercise can be
loaded using command longjump. Use help longjump for details.)
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year | distance | year | distance

1896 | 250 1956 | 308.25
1900 | 282.75 1960 | 319.75
1904 | 289 1964 | 317.75
1908 | 294.5 1968 | 350.5
1912 | 299.25 1972 | 3245
1920 | 2815 1976 | 328.5
1924 | 293 1980 | 336.25

1928 | 304.5 1984 | 336.25
1932 | 300.75 1988 | 343.25

1936 | 317.5 1992 | 341.5
1948 | 308 1996 | 334.75
1952 | 298 2000 | 336.75

a) What is the equation of the least squares line for the event for all years through 20007

Record your result below.

b) Use the equation in part a) to predict the winning distance in 2012 based on all

Olympics through 2000. Record your result on the line below.

¢) What is the equation of the least squares line for the event for all years through 2000

except 19687 Record your result below.

d) Use the equation in part ¢) to predict the winning distance in 2012 based on all

Olympics through 2000 except 1968. Record your result on the line below.

7. The table below gives shoe sizes for women in the United States and in Europe.

7 75 8 81 9 93

[T
DO =

2(U.S.) ‘ 41 6 6

10

y(Europe) | 35 37 371 38 38% 39 40 407 41

a) What is the equation of the least squares line. Record your result below.
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b) Use the equation in part a) to determine the European equivalent of a size 12 shoe.
Record your result on the line below.

8. Delta Airlines published a table showing how the temperature (in °F) outside an airplane
changes as the altitude (in 1000 feet) changes.

z(Altitude in 1000’) | 1 5 10 15 20 30 36.087
y(Temperature) |56 41 23 5 —15 —47  —69

a) What is the equation of the least squares line? Record your result below.

b) Use the equation in part a) to determine the temperature at 40,000 feet. Record your
result on the line below. :

9. The following table lists the number of doctorates awarded annually in mathematics to
U.S. citizens and the percentage of doctorate recipients who are women. (The data for
this exercise can be loaded using command doctor. Use help doctor for details.)

Year U.S. Women Year U.S. Women
1973 774 10 1988 363 21
1974 677 9 1989 411 24
1975 741 11 1990 401 22
1976 722 12 1991 461 24
1977 689 13 1992 430 24
1978 634 14 1993 526 28
1979 596 16 1994 469 26
1980 578 15 1995 567 25
1981 567 18 1996 493 24
1982 519 17 1997 516 29
1983 455 20 1998 586 28
1984 433 20 1999 554 34
1985 396 20 2000 537 29
1986 386 21 2001 494 31
1987 362 20 2002 418 30
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a) What is the equation of the least squares line for the number of U.S. citizens, with
z = years? Record your result below.

b) Use the equation in part a) to predict the number of U.S. citizens who will obtain a
doctorate in mathematics in the year 2010. Record your result on the line below.

c) What is the equation of the least squares line for the percentage of doctorates who are
women, with x = years? Record your result below.

d) Use the equation in part c) to predict the percentage of women doctorates in the year
2010. Record your result on the line below.

<< NOTES; COMMENTS; IDEAS >>
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Appendix 1.

Instructional Extensions to MATLAB

An important feature of this book is the set of instructional M-files which have been designed
as aids for understanding fundamental linear algebra concepts. This section provides a list of
the names of these commands together with a reference to the Lab in which they first appear.
We also provide a description of each of these extensions to MarLas . The descriptions are also
available on-line through the help command.

[ Tustructional Commands or Files [

alldesc m1500run LSQ rowech Lab 4
doctor LSQ mapcirc Lab 13 rowop Lab 2
evecsrch  Lab 13 matdatl Lab 3 rrefquik Lab 4
gschmidt Lab 10  matdat2 Lab 3 rrefstep Lab 4
highjump LSQ matops Lab 3 rrefview Lab 4
homsoln  Lab 6 matrixmaps Lab 11 symrowop Lab 2
igraph Gr. Th. matvec Lab 13 symrref Lab 4
invert Lab 4 modn Sec. Codes uball Lab 9
lincombo Lab 7 planelt Lab 11 vaultlsq LSQ
lisub Lab 6 project Lab 10 vizrowop  Lab 2
longjump LSQ projxy Lab 10 wl00dash LSQ
Isqgame  LSQ rational Lab 3 wl00free  LSQ
lsqline LSQ reduce Lab 2

File alldesc.txt is an ascii text file that contains the collection of help files for each of the
instructional M-files. It can be printed to have an easy reference document.

L Ahbreviations: Gr. Th. - Introduction to Graph Theory; Sec. Codes - Secret Codes; LSQ - Least Squares
Models
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Appendix 2.

Index of MATLAB Commands 2

The MATLAR commands used in this book together with the unit in which they are first in-
troduced are displayed in the following table.

+$ ELE A

!

abs

acos

ans

axis

ceil

clear

conj

cos

det

diag

dot

eig

exit

eye

figure

fix

floor

flops

format
format long e
format short e
format short
format long
grid

gtext

help

2We abbreviate Introduction to MATLAB and Some of its Features as Intro.

LAB 1
LAB 1
LAB 3
LAB 2
LAB 9
LAB 9
LAB 1
LAB1
LAB 3
LAB 2
LAB 2
LAB 10
LAB 8
LAB 3
LAB 9
LAB 13
Intro.
LAB 3
LAB1
LAB 3
LAB 3
LAB 4
LAB 3
LAB 3
LAB 3
LAB 3
LAB 3
LAB 1
LAB 10
Intro.
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hilb

- hold off

hold on
imag
inv
norm
null
ones
plot
poly
polyval
quit
rand
randn
rat

real
reshape
roots
round
rref

sin

size
sqrt
subs
sum
tril

triu
who
whos
Zeros

LAB1
LAB 1
LAB1
LAB 2
LAB 4
LAB9
LAB 12
LAB 3
LAB 1
LAB 13
LAB 3
Intro.
LAB 3
LAB 3
LAB 3
LAB 1
LAB 6
LAB 13
LADB 3
LAB 4
LAB 10
LAB 2
LAB 1
LAB 4
LAB 13
LAB 3
LAB 3
LAB 2
LLAB 2
LAB 3
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Index of Terms 3

100-meter dash, Least Squares Models
100-meter freestyle, Least Squares Models
1500-meter run, Least Squares Models

abs, LAB 9

acos, LAB 9

adjacency matrix, LAB 13
angle between vectors, LAB 9
ans, LAB 1

assignment operator, LAB 1
associative, LAB 5, LAB 11
augmented matrix, LAB 2
axis, LAB 1

basis, LAB 6, LAB 7

Cauchy-Schwarz inequality, LAB 9
ceil, LAB 3

change of basis matrix, LAB 7
characteristic equation, LAB 13
characteristic polynomial, Lab 3, LAB 13
clear, LAB 2

closed, LAB 5

code, Secret Codes

code-matrix, Secret Codes

colon operator, LAB 1

column, LAB 1

column space, LAB 6, LAB 12
command stack, INTRODUCTION
communications network, Intro. to Graph Theory
commutative, LAB 5, LAB 11
complex numbers, LAB 1

complex unit, LAB 1

composition, LAB 11

compression, LAB 11

conj, LAB 1

conjugate, LAB 1

3SMATLAB commands appear in bold face.
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conjugate transpose, LAB 2, LAB 9
continuing command, INTRODUCTION
coordinates, LAB 7, LAB 10

cos, LAB 10

cosine, LAB 9

cryptography, Secret Codes

cubic model, Least Squares Models

decode, Secret Codes
decomposition, LAB 11

det, LAB 8

determinant, LAB 8

diag, LAB 3

diagonal matrix, LAB 3, LAB 8, LAB 13
diagonalizable, LAB 13
differential equation, LAB 13
digraph, Intro. to Graph Theory
display formats, LAB 3

distance, LAB 9

distributive laws, LAB 5

doctor, Least Squares Models
doctorates, Least Squares Models

dominance directed graph, Intro. to Graph Theory

dot, LAB 9
dot product, LAB 9

edges, LAB 13, Intro. to Graph Theory
editing, INTRODUCTION

eig, LAB 13

eigenproblem, LAB 13

eigenvalue, LAB 13

cigenvectors, LAB 4, LAB 12, LAB 13
encode, Secret Codes

enter matrix, LAB 1

evecsrch, LAB 13

exit, INTRODUCTION

exp, Least Squares Models

expansion, LAB 11

exponential model, Least Squares Models
eye, LAB 3

figure, LAB 1
fix, LAB 3
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floating point operations, LAB 4, LAB 13
floor, LAB 3

flops, LAB 4

format, LAB 3

general solution, LAB 4

generalized inverse, Least Squares Models
Gram Schmidt process, LAB 10

graph, LAB 13, Intro. to Graph Theory
graph theory, LAB 13

graphics, LAB 1

grid, LAB 1

gschmidt, LAB 10

gtext, LAB 10

help, INTRODUCTION

Hermitian matrix, LAB 2, LAB 10

highjump, Least Squares Models

high jump, Least Squares Models

hilb, LAB 1

Hilbert matrix, LAB 1, LAB 3, LAB 4, LAB 10
hold, LAB 1

homogeneous coordinates, Lab 11

homogeneous system, LAB 4, LAB 6

homsoln, Lab 6, LAB 12

i, LAB 1

identity mapping, LAB 11

identity matrix, LAB 3, LAB 11
igraph, Intro. to Graph Thcory
imag, LAB 1

image, LAB 12

imaginary part, LAB 1

incidence matrix, Intro. to Graph Theory
inner product, LAB 9

inner product space, LAB 9, LAB 10
inv, LAB 4

invert, LAB 4

inverse property, LAB 5

inverses, LAB 4

invertible matrix, LAB 4, LAB 11
invertible transformation, LAD 11
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kernel, LAB 12

leading 1, LAB 4

least squares approximation, Least Squares Models
least squares line, Least Squares Models
least squares model, Least Squares Models
length, LAB 9, Intro. to Graph Theory
lincombo, LAB 7

linear combination, LAB 6, LAB 7

linear model, Least Squares Models

linear transformations, LAB 11, LAB 12
linearly dependent, LAB 6

linearly independent, LAB 6

lisub, Lab 6, LAB 12

longjump, Least Squares Models

long jump, Least Squares Models

loop, Intro. to Graph Theory

lower triangular matrix, LAB 3, LAB 13
Isggame, Least Squares Models

Isgline, Least Squares Models

m1500run, Least Squares Models
magnification factor, Lab 11
mapcirc, LAB 13

Markov matrix, LAB 13
matdatl, LAB 3

matdat2, LAB 3

matops, LAB 3

MarLas , INTRODUCTION
matrix difference, LAB 3
matrix entry, LAB 1

matrix multiplication, LAB 11
matrix name, LAB 1

matrix operations, LAB 3
matrix powers, LAB 13, Intro. to Graph Theory
matrix product, LAB 3
matrix representation, LAB 11
matrix sum, LAB 3
‘matrixmaps, Lab 11
matvec, LAB 13

max norm, LAB 9

models, LAB 2

modn, Secret Codes

movie, LAB 4
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neutrally stable, LAB 13

nodes, LAB 13, Intro. to Graph Theory
non-invertible matrix, LAB 11
nonsingular, LAB 4, LAB 8

nontrivial solution, LAB 4

norm, LAB 9

normalize, LAB 10

null, LAB 12

null space, LAB 6, LAB 12

Olympics, Least Squares Models

ones, LAB 3

ones matrix, LAB 3

ordered basis, LAB 7

orthogonal set, LAB 10, Least Squares Models
orthogonal vectors, LAB 9

orthonormal basis, LAB 10

orthonormal set, LAB 10

parabola, LAB 2

path, Intro. to Graph Theory

pause, LAB 3

pentagon, LAB 11

pivots, LAB 4

pivot row, LAB 4

plane linear transformations, LAB 11
planelt, LAB 11

plot, LAB 1

plot line, LAB 1

pole vault, Least Squares Models
poly, LAB 13

polynomial, LAB 6

polynomial model, Least Squares Models
polyval, Lab2, Lab 3

population growth model, LAB 3, LAB 4 'LAB 13
powerful node, Intro. to Graph Theory
powers, LAB 3

pre-image, LAB 12

project, LAB 10

projection, LAB 10

projxy, LAB 10

pseudo inverse, Least Squares Models
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quit, INTRODUCTION

rand, LAB 3

randn, LAB 3

random number generator, LAB 3
range, LAB 12

rat, LAB 3

rational, LAB 3

rational display, LAB 3

real, LAB 1

real part, LAB 1

rectangle, LAB 11

reduce, LAB 2, LAB 4

reduced row echelon form, LAB 4
reflection, LAB 11

reshape, LAB 6

roots, LAB 13

rotation, LAB 11

round, LAB 3

round-robin tournament, Intro. to Graph Theory

row, LAB 1

rowech, LAB 4

row operations, LAB 2, LAB 8
rowop, LAB 2

row space, LAB 6

rref, LAB 4

rrefquik, LAB 4

rrefstep, LAB 4

rrefview, LAB 4

scalar multiple, LAB 3

scalar multiplication, LAB 5
shear, LAB 11

shoe size, Least Squares Models
sin, LAB 10

singular matrix, LAB 4, LAB 8, LAB 11, Secret Codes

size, LAB 2

skew Hermitian, LAB 2
skew symmetric, LAB 3
solution space, LAB 6
span, LAB 6, LAB 10
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spanning set, LAB 6

square root, LAB 1, LAB 10

sqrt, LAB 1

stable, LAB 13

stack, INTRODUCTION

standard inner product space, LAB 9
steady state, LAB 3, LAB 13

stop execution, INTRODUCTION
subs, Lab 4

sum, LAB 13

suppress display, LAB 1

symmetric matrix, LAB 3, LAB 13, Intro to Graph Theory
synirowop, LAB 2

symrref, LAB 4

system of equations, LAB 1, LAB 2

temperature, Least Squares Models
transition matrix, LAB 3, LAB 7
transpose, LAB 2, LAB 3, LAB 8
triangle, LAB 11

tril, LAB 3

triu, LAB 3

uball, LAB 9

unit ball, LAB 9

unit square, LAB 11

unit vector, LAB 9

unstable, LAB 13

upper triangular matrix, LAB 3, LAB 8, LAB 13

vaultlsq, Least Squares Models

vector space, LAB 5

vertices, LAB 13, Intro. to Graph Theory
vizrowop, LAB 2

w100dash, Least Squares Models
w100free, Least Squares Models
who, LAB 2

whos, LAB 2

zeros, LAB 3
zero matrix, LAB 3
zero property, LAB 5
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